ArticleOriginal scientific text

Title

Unilateral problems for elliptic systems with gradient constraints

Authors 1

Affiliations

  1. Institute of Mathematics, Russian Academy of Sciences, Siberian Branch, Universitetskiĭ Prosp. 4, 630090 Novosibirsk, Russia

Bibliography

  1. A. A. Arkhipova, Regularity of the solution of a system of variational inequalities with constraint in N, Vestnik Leningrad. Univ. 1984 (13), 5-9 (in Russian).
  2. A. A. Arkhipova, Regularity of the problem with an obstacle up to the boundary for strongly elliptic operators, in: Some Applications of Functional Analysis to Problems of Mathematical Physics, Inst. Math., Siberian Branch of Acad. Sci. USSR, Novosibirsk 1988, 3-20 (in Russian).
  3. A. A. Arkhipova, Minimal supersolutions for the obstacle problem, Izv. Akad. Nauk SSSR 37 (1973), 1156-1185 (in Russian).
  4. A. A. Arkhipova and N. N. Ural'tseva, The regularity of solutions of variational inequalities under convex boundary constraints for a class of non-linear operators, Vestnik Leningrad. Univ. 1987 (15), 13-19 (in Russian).
  5. L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), 1067-1075.
  6. L. C. Evans, A second order elliptic equation with gradient constraint, ibid. 4 (1979), 555-572 and 1199.
  7. A. Friedman, Variational Principles and Free-Boundary Problems, Wiley, New York 1982.
  8. S. Hildebrandt and K.-O. Widman, Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 191-220.
  9. H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations 8 (1983), 317-346.
  10. R. Jensen, Regularity for elastic-plastic type variational inequalities, Indiana Univ. Math. J. 32 (1983), 407-423.
  11. D. Kinderlehrer, The smoothness of the solution of the boundary obstacle problem, J. Math. Pures Appl. 60 (1981), 193-212.
  12. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Acad. Press, New York 1980.
  13. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow 1973 (in Russian).
  14. H. Lewy and G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153-188.
  15. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969.
  16. T. N. Rozhkovskaya, Unilateral problems with convex constraints on the gradient, in: Partial Differential Equations, Proc. S. L. Sobolev Seminar, Novosibirsk 1981, 78-85 (in Russian).
  17. T. N. Rozhkovskaya, The smoothness of the solutions of the variational inequalities with gradient constraints, in: The Imbedding Theorems and Their Applications, Proc. S. L. Sobolev Seminar, Novosibirsk 1982, 128-138 (in Russian).
  18. T. N. Rozhkovskaya, On one-sided problems for non-linear operators with convex constraints on the gradient of the solution, Dokl. Akad. Nauk SSSR 268 (1983), 38-41 (in Russian). English transl. in Soviet Math. Dokl. 27 (1983).
  19. T. N. Rozhkovskaya, The regularity theorem for a unilateral problem with the convex constraints on the gradient of the solution, in: Problemy Mat. Anal. 9, Izdat. Leningrad. Univ., Leningrad 1984, 166-171; English transl. in J. Soviet Math. 35 (1) (1986).
  20. T. N. Rozhkovskaya, Unilateral problems for elliptic operators with convex constraints on the gradient of the solution, Sibirsk. Mat. Zh. 26 (3) (1985), 134-146 and 26 (5) (1985), 150-158 (in Russian).
  21. T. N. Rozhkovskaya, One-sided problems for parabolic quasilinear operators, Dokl. Akad. Nauk SSSR 290 (3) (1986), 549-552 (in Russian).
  22. T. N. Rozhkovskaya, Unilateral problems with convex constraints for quasilinear parabolic operators, Sibirsk. Mat. Zh. 29 (5) (1988), 198-211 (in Russian).
  23. G. M. Troianiello, Maximal and minimal solutions to a class of elliptic quasilinear problems, Proc. Amer. Math. Soc. 91 (1) (1984), 95-101.
  24. N. N. Ural'tseva, Hölder continuity of gradients of solutions of parabolic equations under the Signorini conditions on the boundary, Dokl. Akad. Nauk SSSR 280 (3) (1985), 563-565 (in Russian).
  25. N. N. Ural'tseva, On the regularity of solutions of variational inequalities, Uspekhi Mat. Nauk 42 (6) (1987), 151-174 (in Russian).
  26. M. Wiegner, The C1,1-character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations 6 (1981), 361-371.
  27. G. H. Williams, Nonlinear nonhomogeneous elliptic variational inequalities with a nonconstant gradient constraint, J. Math. Pures Appl. 60 (2) (1981), 213-226.
Pages:
425-445
Main language of publication
English
Published
1992
Exact and natural sciences