Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A Navier-Stokes type equation corresponding to a non-linear relationship between the stress tensor and the velocity deformation tensor is studied and existence and uniqueness theorems for the solution, in the 3-dimensional case, of the Cauchy-Dirichlet problem, for a bounded solution and for an almost periodic solution are given. An inequality which in some sense is the limit of the equation is also considered and existence theorems for the solution of the Cauchy-Dirichlet problems and for a periodic solution are stated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
367-371
Opis fizyczny
Daty
wydano
1992
Twórcy
autor
- Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
Bibliografia
- [1] L. Amerio and G. Prouse, Almost-periodic Functions and Functional Equations, Van Nostrand, 1971.
- [2] T. Collini, On a Navier-Stokes type inequality, Rend. Ist. Lomb. Sc. Lett., to appear.
- [3] T. Collini, Periodic solutions of a Navier-Stokes type inequality, ibid., to appear.
- [4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.
- [5] A. Iannelli, Bounded and almost-periodic solutions of a Navier-Stokes type equation, Rend. Accad. Naz. Sci. XL, to appear.
- [6] G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959), 173-182.
- [7] G. Prouse, On a Navier-Stokes type equation, in: Non-linear Analysis: a Tribute to G. Prodi, Quaderni Scuola Norm. Sup. Pisa, to appear.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv27z2p367bwm