PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1992 | 27 | 2 | 367-371
Tytuł artykułu

On a Navier-Stokes type equation and inequality

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Navier-Stokes type equation corresponding to a non-linear relationship between the stress tensor and the velocity deformation tensor is studied and existence and uniqueness theorems for the solution, in the 3-dimensional case, of the Cauchy-Dirichlet problem, for a bounded solution and for an almost periodic solution are given. An inequality which in some sense is the limit of the equation is also considered and existence theorems for the solution of the Cauchy-Dirichlet problems and for a periodic solution are stated.
Słowa kluczowe
Rocznik
Tom
27
Numer
2
Strony
367-371
Opis fizyczny
Daty
wydano
1992
Twórcy
  • Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
Bibliografia
  • [1] L. Amerio and G. Prouse, Almost-periodic Functions and Functional Equations, Van Nostrand, 1971.
  • [2] T. Collini, On a Navier-Stokes type inequality, Rend. Ist. Lomb. Sc. Lett., to appear.
  • [3] T. Collini, Periodic solutions of a Navier-Stokes type inequality, ibid., to appear.
  • [4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.
  • [5] A. Iannelli, Bounded and almost-periodic solutions of a Navier-Stokes type equation, Rend. Accad. Naz. Sci. XL, to appear.
  • [6] G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959), 173-182.
  • [7] G. Prouse, On a Navier-Stokes type equation, in: Non-linear Analysis: a Tribute to G. Prodi, Quaderni Scuola Norm. Sup. Pisa, to appear.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv27z2p367bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.