ArticleOriginal scientific text
Title
Static electromagnetic fields in monotone media
Authors 1
Affiliations
- Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201, U.S.A.
Abstract
The paper considers the static Maxwell system for a Lipschitz domain with perfectly conducting boundary. Electric and magnetic permeability ε and μ are allowed to be monotone and Lipschitz continuous functions of the electromagnetic field. The existence theory is developed in the framework of the theory of monotone operators.
Bibliography
- H. Brezis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam 1973.
- K. O. Friedrichs, Differential forms on Riemannian manifolds, Comm. Pure Appl. Math. 8 (1955), 551-590.
- D. Graffi, Nonlinear Partial Differential Equations in Physical Problems, Pitman, Boston 1980.
- N. J. Hicks, Notes on Differential Geometry, Van Nostrand, Princeton 1965.
- J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars, Paris 1969.
- A. Milani and R. Picard, Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems, in: Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin 1988, 317-340.
- R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie, Math. Methods Appl. Sci. 3 (1981), 218-228.
- R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. Roy. Soc. Edinburgh 92A (1982), 165-174.
- R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z. 187 (1984), 151-164.
- R. Picard, The low frequency limit for time-harmonic acoustic waves, Math. Methods Appl. Sci. 8 (1986), 436-450.
- R. Picard, Some decomposition theorems and their application to non-linear potential theory and Hodge theory, ibid. 12 (1990), 35-52.
- C. Von Westenholz, Differential Forms In Mathematical Physics, Stud. In Math. Appl., North-Holland, Amsterdam 1978.