PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1992 | 27 | 2 | 349-360
Tytuł artykułu

Static electromagnetic fields in monotone media

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper considers the static Maxwell system for a Lipschitz domain with perfectly conducting boundary. Electric and magnetic permeability ε and μ are allowed to be monotone and Lipschitz continuous functions of the electromagnetic field. The existence theory is developed in the framework of the theory of monotone operators.
Słowa kluczowe
Rocznik
Tom
27
Numer
2
Strony
349-360
Opis fizyczny
Daty
wydano
1992
Twórcy
  • Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201, U.S.A.
Bibliografia
  • [1] H. Brezis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam 1973.
  • [2] K. O. Friedrichs, Differential forms on Riemannian manifolds, Comm. Pure Appl. Math. 8 (1955), 551-590.
  • [3] D. Graffi, Nonlinear Partial Differential Equations in Physical Problems, Pitman, Boston 1980.
  • [4] N. J. Hicks, Notes on Differential Geometry, Van Nostrand, Princeton 1965.
  • [5] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars, Paris 1969.
  • [6] A. Milani and R. Picard, Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems, in: Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin 1988, 317-340.
  • [7] R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie, Math. Methods Appl. Sci. 3 (1981), 218-228.
  • [8] R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. Roy. Soc. Edinburgh 92A (1982), 165-174.
  • [9] R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z. 187 (1984), 151-164.
  • [10] R. Picard, The low frequency limit for time-harmonic acoustic waves, Math. Methods Appl. Sci. 8 (1986), 436-450.
  • [11] R. Picard, Some decomposition theorems and their application to non-linear potential theory and Hodge theory, ibid. 12 (1990), 35-52.
  • [12] C. Von Westenholz, Differential Forms In Mathematical Physics, Stud. In Math. Appl., North-Holland, Amsterdam 1978.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv27z2p349bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.