ArticleOriginal scientific text

Title

On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva

Authors 1

Affiliations

  1. Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA

Bibliography

  1. L. Boccardo, P. Marcellini and C. Sbordone, L-regularity for variational problems with sharp non standard growth conditions, Boll. Un. Mat. Ital. (7) 4-A (1990), 219-225.
  2. H. J. Choe, A regularity theory for a more general class of quasilinear elliptic differential equations and obstacle problems, Arch. Rational Mech. Anal. 114 (1991), 393-394.
  3. H. J. Choe, Regularity for certain degenerate elliptic double obstacle problems, J. Math. Anal. Appl., to appear.
  4. E. DiBenedetto, C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850.
  5. E. DiBenedetto, On the local behavior of solutions of degenerate parabolic equations with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (4) 13 (1986), 487-535.
  6. E. DiBenedetto and Y.-Z. Chen, On the local behaviour of solutions of singular parabolic equations, Arch. Rational Mech. Anal. 103 (1988), 319-345.
  7. E. DiBenedetto and Y.-Z. Chen, Boundary estimates for solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 395 (1989), 102-131.
  8. E. DiBenedetto and A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, ibid. 349 (1984), 83-128.
  9. E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, ibid. 357 (1985), 1-22.
  10. E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2, Arch. Rational Mech. Anal. 111 (1990), 225-290.
  11. E. DiBenedetto and N. S. Trudinger, Harnack inequalities for quasi-minima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295-308.
  12. T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75.
  13. M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248.
  14. M. Giaquinta and E. Giusti, Global C1,α regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math. 351 (1984), 55-65.
  15. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin 1983.
  16. T. Kilpeläinen and W. P. Ziemer, Pointwise regularity of solutions to nonlinear double obstacle problems, Ark. Mat. 29 (1991), 83-106.
  17. A. G. Korolev, On boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities, Mat. Sb. 180 (1989), 78-100 (in Russian); English transl.: Math. USSR-Sb. 66 (1990), 83-106.
  18. M. A. Kranosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.
  19. N. V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 75-108 (in Russian); English transl.: Math. USSR-Izv. 21 (1984), 67-98.
  20. O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1967.
  21. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow 1964 (in Russian); English transl.: Academic Press, New York 1968. 2nd Russian ed., 1973.
  22. G. M. Lieberman, Interior gradient bounds for non-uniformly parabolic equations, Indiana Univ. Math. J. 32 (1983), 579-601.
  23. G. M. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations, Ann. Scuola Norm Sup. Pisa (4) 13 (1986), 347-387.
  24. G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
  25. G. M. Lieberman, Boundary regularity for solutions of degenerate parabolic equations, ibid. 14 (1990), 501-524.
  26. G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361.
  27. G. M. Lieberman, Local and boundary regularity for some variational inequalities involving p-Laplaciantype operators, to appear.
  28. G. M. Lieberman, Regularity of solutions to some degenerate double obstacle problems, Indiana Univ. Math. J. 40 (1991), 1009-1028.
  29. G. M. Lieberman, Boundary and initial regularity for solutions of degenerate parabolic equations, Nonlinear Anal., to appear.
  30. J. H. Michael and W. P. Ziemer, Interior regularity for solutions to obstacle problems, Nonlinear Anal. 10 (1986), 1427-1448.
  31. J. H. Michael and W. P. Ziemer, Existence of solutions to obstacle problems, ibid. 17 (1991), 45-71.
  32. J. Mu, Higher regularity of the solution to the p-Laplacian obstacle problem, J. Differential Equations 95 (1992), 370-384.
  33. J. Mu and W. P. Ziemer, Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations, Comm. Partial Differential Equations 16 (1991), 821-843.
  34. L. M. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J. 25 (1976), 821-855.
  35. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.
  36. K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240.
  37. N. N. Ural'tseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184-222 (in Russian); English transl.: Sem. Math. V. A. Steklov Math. Inst. Leningrad 7 (1968), 83-99.
  38. M. Wiegner, On Cα-regularity of the gradient of solutions of degenerate parabolic systems, Ann. Mat. Pura Appl. 145 (1986), 385-405.
Pages:
295-308
Main language of publication
English
Published
1992
Exact and natural sciences