ArticleOriginal scientific text

Title

On a class of nonlinear elliptic equations

Authors 1

Affiliations

  1. Département de Mathématiques et Informatique, Université de Metz, Ile du Saulcy, F-57045 Metz Cedex 01, France

Bibliography

  1. [AW] L. Alfonsi and F. B. Weissler, Blow up in n for a parabolic equation with a damping nonlinear gradient term, preprint.
  2. [CV] M. Chipot and F. Voirol, in preparation.
  3. [CW₁] M. Chipot and F. B. Weissler, Some blow up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal. 20 (4) (1989), 886-907.
  4. [CW₂] M. Chipot and F. B. Weissler, Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ. 12, Vol. 1, Springer, 1988.
  5. [F] M. Fila, Remarks on blow up for a nonlinear parabolic equation with a gradient term, Proc. Amer. Math. Soc. 111 (1991), 795-801.
  6. [KP] B. Kawohl and L. A. Peletier, Observations on blow up and dead cores for nonlinear parabolic equations, Math. Z. 202 (1989), 207-217.
  7. [GNN] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
  8. [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1985.
  9. [P₁] S. I. Pokhozhaev, Solvability of an elliptic problem in N with supercritical nonlinearity exponent, Dokl. Akad. Nauk SSSR 313 (6) (1990), 1356-1360 (in Russian).
  10. [P₂] S. I. Pokhozhaev, Positivity classes of elliptic operators in N with supercritical nonlinearity exponent, ibid. 314 (1990), 558-561 (in Russian).
  11. [Q] P. Quittner, Blow up for semilinear parabolic equations with a gradient term, preprint.
  12. [V] F. Voirol, Thesis, University of Metz, in preparation.
  13. [W] F. B. Weissler, private communication.
Pages:
75-80
Main language of publication
English
Published
1992
Exact and natural sciences