ArticleOriginal scientific text

Title

Estimates of solutions to linear elliptic systems and equations

Authors 1

Affiliations

  1. I. Mathematisches Institut, Freie Universität Berlin, Arnimallee 3, D-1000 Berlin 33, Germany

Abstract

Whenever nonlinear problems have to be solved through approximation methods by solving related linear problems a priori estimates are very useful. In the following this kind of estimates are presented for a variety of equations related to generalized first order Beltrami systems in the plane and for second order elliptic equations in m. Different types of boundary value problems are considered. For Beltrami systems these are the Riemann-Hilbert, the Riemann and the Poincaré problem, while for elliptic equations the Dirichlet problem as well as entire solutions are involved.

Bibliography

  1. H. Begehr, An approximation method for the Dirichlet problem of nonlinear elliptic systems in r, Rev. Roumaine Math. Pures Appl. 27 (1982), 927-934.
  2. H. Begehr, Boundary value problems for systems with Cauchy-Riemannian main part, in: Complex Analysis, Fifth Romanian-Finnish Seminar, Bucharest 1981, Lecture Notes in Math. 1014, Springer, Berlin 1983, 265-279.
  3. H. Begehr, Boundary value problems for analytic and generalized analytic functions, in: Complex Analysis-Methods, Trends, and Applications, E. Lankau and W. Tutschke (eds.), Akad.- Verlag, Berlin 1983, 150-165.
  4. H. Begehr, Remark on Hilbert's boundary value problem for Beltrami systems, Proc. Roy. Soc. Edinburgh 98A (1984), 305-310.
  5. H. Begehr and D. Q. Dai, Initial boundary value problem for nonlinear pseudoparabolic equations, Complex Variables Theory Appl., to appear.
  6. H. Begehr and R. P. Gilbert, Piecewise continuous solutions of pseudoparabolic equations in two space dimensions, Proc. Roy. Soc. Edinburgh 81A (1978), 153-173.
  7. H. Begehr and R. P. Gilbert, On Riemann boundary value problems for certain linear elliptic systems in the plane, J. Differential Equations 32 (1979), 1-14.
  8. H. Begehr and R. P. Gilbert, Boundary value problems associated with first order elliptic systems in the plane, in: Contemp. Math. 11, Amer. Math. Soc., 1982, 13-48.
  9. H. Begehr and R. P. Gilbert, Pseudohyperanalytic functions, Complex Variables Theory Appl. 9 (1988), 343-357.
  10. H. Begehr and G. N. Hile, Nonlinear Riemann boundary value problems for a semilinear elliptic system in the plane, Math. Z. 179 (1982), 241-261.
  11. H. Begehr and G. N. Hile, Riemann boundary value problems for nonlinear elliptic systems, Complex Variables Theory Appl. 1 (1983), 239-261.
  12. H. Begehr and G. N. Hile, Schauder estimates and existence theory for entire solutions of linear elliptic equations, Proc. Roy. Soc. Edinburgh 110A (1988), 101-123.
  13. H. Begehr and G. C. Hsiao, Nonlinear boundary value problems for a class of elliptic systems, in: Komplexe Analysis und ihre Anwendungen auf partielle Differentialgleichungen, Martin-Luther Universität, Halle-Wittenberg. Wissensch. Beiträge 1980, 90-102.
  14. H. Begehr and G. C. Hsiao, On nonlinear boundary value problems of elliptic systems in the plane, in: Ordinary and Partial Differential Equations, Proc. Dundee 1980, Lecture Notes in Math. 846, Springer, Berlin 1981, 55-63.
  15. H. Begehr and G. C. Hsiao, Nonlinear boundary value problems of Riemann-Hilbert type, in: Contemp. Math. 11, Amer. Math. Soc., 1982, 139-153.
  16. H. Begehr and G. C. Hsiao, The Hilbert boundary value problem for nonlinear elliptic systems, Proc. Roy. Soc. Edinburgh 94A (1983), 97-112.
  17. H. Begehr and G. C. Hsiao, A priori estimates for elliptic systems, Z. Anal. Anwendungen 6 (1987), 1-21.
  18. H. Begehr and G.-C. Wen, The discontinuous oblique derivative problem for nonlinear elliptic systems of first order, Rev. Roumaine Math. Pures Appl. 33 (1988), 7-19.
  19. H. Begehr and G.-C. Wen, A priori estimates for the discontinuous oblique derivative problem for elliptic systems, Math. Nachr. 142 (1989), 307-336.
  20. H. Begehr, G.-C. Wen and Z. Zhao, An initial and boundary value problem for nonlinear composite type systems of three equations, Math. Panonica 2 (1991), 49-61.
  21. H. Begehr and Z. Y. Xu, Nonlinear half-Dirichlet problems for first order elliptic equations in the unit ball of m (m ≥ 3), Appl. Anal., to appear.
  22. L. Bers, Theory of Pseudoanalytic Functions, Courant Inst., New York 1953.
  23. L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, in: Convegno Intern. Eq. Lin. Der. Parz., Trieste 1954, Edizioni Cremonese, Roma 1955, 111-140.
  24. B. Bojarski, A boundary value problem for a system of elliptic first order partial differential equations, Dokl. Akad. Nauk SSSR 102 (1955), 201-204 (in Russian).
  25. B. Bojarski, Homeomorphic solutions of Beltrami systems, ibid. 661-664 (in Russian).
  26. B. Bojarski, On solutions of a linear elliptic system of differential equations in the plane, ibid. 871-874 (in Russian).
  27. B. Bojarski, Some boundary value problems for elliptic systems with two independent variables, Ph.D. thesis, Moscow Univ., 1955 (in Russian).
  28. B. Bojarski, Generalized solutions of a system of differential equations of the first order of elliptic type with discontinuous coefficients, Mat. Sb. 43 (85) (1957), 451-503 (in Russian).
  29. B. Bojarski, Studies on elliptic equations in plane domains and boundary value problems of function theory, Habilitation thesis, Steklov Inst., Moscow 1960, 320 pp. (in Russian).
  30. B. Bojarski, Subsonic flow of compressible fluid, Arch. Mech. Stos. 18 (1966), 497-519; also in: The Math. Problems in Fluid Mechanics, Polish Acad. Sci., Warszawa 1967, 9-32.
  31. B. Bojarski, Theory of generalized analytic vectors, Ann. Polon. Math. 17 (1966), 281-320 (in Russian).
  32. B. Bojarski, Quasiconformal mappings and general structural properties of systems of non-linear equations elliptic in the sense of Lavrentiev, Symposia Math. 18 (1976), 485-499.
  33. B. Bojarski and I. Iwaniec, Quasiconformal mappings and non-linear elliptic equations in two variables. I, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 473-478; 479-484.
  34. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman, London 1982.
  35. D. Q. Dai, On an initial boundary value problem for nonlinear pseudoparabolic equations with two space variables, Complex Variables Theory Appl., to appear.
  36. R. Delanghe, F. Sommen and Z. Y. Xu, Half-Dirichlet problems for powers of the Dirac operator in the unit ball of m (m ≥ 3), Bull. Soc. Math. Belg. Sér. B 42 (1990), 409-429.
  37. A. Douglis, A function-theoretic approach to elliptic systems of equations in two variables, Comm. Pure Appl. Math. 6 (1953), 259-289.
  38. A. Dzhuraev, Systems of Equations of Composite Type, Longman, Essex, 1989.
  39. F. D. Gakhov, Boundary Value Problems, Pergamon Press, Oxford 1966.
  40. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin 1977.
  41. R. P. Gilbert and J. Buchanan, First Order Elliptic Systems: A Function Theoretic Approach, Acad. Press, New York 1983.
  42. R. P. Gilbert and G. N. Hile, Generalized hypercomplex function theory, Trans. Amer. Math. Soc. 195 (1974), 1-29.
  43. R. P. Gilbert and G. N. Hile, Hypercomplex function theory in the sense of L. Bers, Math. Nachr. 72 (1976), 187-200.
  44. W. Haak and W. Wendland, Lectures on Partial and Pfaffian Differential Equations, Pergamon Press, Oxford 1972.
  45. P. Henrici, Applied and Computational Complex Analysis, Vol. 3, Wiley, New York 1986.
  46. T. Iwaniec, Quasiconformal mapping problem for general nonlinear systems of partial differential equations, Symposia Math. 18 (1976), 501-517.
  47. V. N. Monakhov, Boundary-value problems with free boundaries for elliptic systems of equations, Amer. Math. Soc., Providence, R.I., 1983.
  48. N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Leyden 1977.
  49. W. Tutschke, Reduction of the problem of linear conjugation for first order nonlinear elliptic systems in the plane to an analogous problem for holomorphic functions, in: Lecture Notes in Math. 798, Springer, Berlin 1980, 446-455.
  50. W. Tutschke, Partielle Differentialgleichungen, Teubner, Leipzig 1983.
  51. I. N. Vekua, Generalized Analytic Functions, Pergamon Press, Oxford 1962.
  52. V. S. Vinogradov, On a boundary value problem for linear elliptic systems of first order in the plane, Dokl. Akad. Nauk SSSR 118 (1958), 1059-1062 (in Russian).
  53. V. S. Vinogradov, On the boundedness of solutions of boundary value problems for linear elliptic systems of first order in the plane, ibid. 121 (1958), 399-402 (in Russian).
  54. V. S. Vinogradov, On some boundary value problems for quasilinear elliptic systems of first order in the plane, ibid., 579-581 (in Russian).
  55. V. S. Vinogradov, A certain boundary value problem for an elliptic system of special form, Differentsial'nye Uravneniya 7 (1971), 1226-1234, 1341 (in Russian).
  56. G.-C. Wen and H. Begehr, Boundary Value Problems for Elliptic Equations and Systems, Longman, Essex 1990.
  57. W. Wendland, An integral equation method for generalized analytic functions, in: Constructive and Computational Methods for Differential and Integral Equations, Lecture Notes in Math. 430, Springer, Berlin 1974, 414-452.
  58. W. Wendland, On the imbedding method for semilinear first order elliptic systems and related finite element methods, in: Continuation Methods, Acad. Press, New York 1978, 277-336.
  59. W. Wendland, Elliptic Systems in the Plane, Pitman, London 1979.
  60. J. Wloka, Funktionenanalysis und Anwendungen, de Gruyter, Berlin 1971.
  61. Z. Xu, Boundary value problems and function theory for spin-invariant differential operators, thesis, State University of Ghent, Gent 1989.
Pages:
45-63
Main language of publication
English
Published
1992
Exact and natural sciences