Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1992 | 27 | 1 | 271-275

Tytuł artykułu

Harmonic morphisms and non-linear potential theory

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Originally, harmonic morphisms were defined as continuous mappings φ:X → X' between harmonic spaces such that h'∘φ remains harmonic whenever h' is harmonic, see [1], p. 20. In general linear axiomatic potential theory, one has to replace harmonic functions h' by hyperharmonic functions u' in this definition, in order to obtain an interesting class of mappings, see [3], Remark 2.3. The modified definition appears to be equivalent with the original one, provided X' is a Bauer space, i.e., a harmonic space with a base consisting of regular sets, see [3], Theorem 2.4. To extend the linear proof of this result directly into the recent non-linear theories fails, even in the case of semi-classical non-linear considerations [6]. The aim of this note is to give a modified proof which settles such difficulties in the quasi-linear theories [4], [5].

Rocznik

Tom

27

Numer

1

Strony

271-275

Daty

wydano
1992

Twórcy

autor
  • Department of Mathematics, University of Joensuu, P.O. Box 111, SF-80101 Joensuu, Finland

Bibliografia

  • [1] C. Constantinescu and A. Cornea, Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57.
  • [2] C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer, 1972.
  • [3] I. Laine, Covering properties of harmonic Bl-mappings III, Ann. Acad. Sci. Fenn. Ser. AI Math. 1 (1975), 309-325.
  • [4] I. Laine, Introduction to a quasi-linear potential theory, ibid. 10 (1985), 339-348.
  • [5] I. Laine, Axiomatic non-linear potential theories, in: Lecture Notes in Math. 1344, Springer, 1988, 118-132.
  • [6] O. Martio, Potential theoretic aspects of non-linear elliptic partial differential equations, Univ. of Jyväskylä, Dept. of Math., Report 44, 1989.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv27z1p271bwm