PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1992 | 27 | 1 | 225-231
Tytuł artykułu

An optimal control problem for a fourth-order variational inequality

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An optimal control problem is considered where the state of the system is described by a variational inequality for the operator w → εΔ²w - φ(‖∇w‖²)Δw. A set of nonnegative functions φ is used as a control region. The problem is shown to have a solution for every fixed ε > 0. Moreover, the solvability of the limit optimal control problem corresponding to ε = 0 is proved. A compactness property of the solutions of the optimal control problems for ε > 0 and their relation with the limit problem are established. This type of operator arises in the theory of nonlinear plates, and the choice of a most suitable function φ is of interest for applications [2]. The problem of control of the function w has been studied in [4] for the operator under consideration, and some statements of this work will be used. Nonstationary problems with analogous operators were analyzed in [6,7]. Some general results on control of second-order variational inequalities can be found in [1]. The first section of this paper deals with the control problem for our fourth-order operator, the second considers a second-order operator, and the third studies the relationship between the solutions of the two problems.
Słowa kluczowe
Rocznik
Tom
27
Numer
1
Strony
225-231
Opis fizyczny
Daty
wydano
1992
Twórcy
  • Lavrent'ev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
Bibliografia
  • [1] V. Barbu, Optimal Control of Variational Inequalities, Res. Notes in Math. 100, Pitman, 1984.
  • [2] E. I. Grigolyuk and G. M. Kulikow, On a simplified method of solution of nonlinear problems in elastic plate and shell theory, in: Some Applied Problems of Plate and Shell Theory, Moscow University, 1981, 94-121 (in Russian).
  • [3] A. M. Khludnev, A boundary-value problem for a system of equations with a monotone operator, Differentsial'nye Uravneniya 16 (10) (1980), 1843-1849 (in Russian).
  • [4] A. M. Khludnev, On limit passages in optimal control problems for a fourth-order operator, ibid. 25 (8) (1989), 1427-1435 (in Russian).
  • [5] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Springer, 1972.
  • [6] S. I. Pokhozhaev, On a class of quasilinear hyperbolic equations, Mat. Sb. 96 (1) (1975), 152-166 (in Russian).
  • [7] S. I. Pokhozhaev, On a quasilinear hyperbolic Kirchhoff equation, Differentsial'nye Uravneniya 21 (1) (1985), 101-108 (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv27z1p225bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.