ArticleOriginal scientific text

Title

On continuation of regular solutions of linear partial differential equations

Authors 1

Affiliations

  1. Department of Mathematics, College of General Education, University of Tokyo, Tokyo, Japan

Bibliography

  1. W. Abramczuk, On continuation of quasi-analytic solutions of partial differential equations to compact convex sets, J. Austral. Math. Soc. 39 (1985), 306-316.
  2. Sh. A. Akhmedov, On continuation of generalized solutions of differential equations defined on a neighborhood of characteristic subspaces, Dokl. Akad. Nauk SSSR 197 (1971), 255-256.
  3. A. Andreotti, Complexes of Partial Differential Operators, Yale University, 1975.
  4. E. Bedford and T. Kawai, Local extension of solutions of systems of linear differential equations with constant coefficients, Comm. Pure Appl. Math. 30 (1977), 235-254.
  5. G. Bengel, Sur le prolongement analytique des solutions d'une équation aux dérivées partielles, C. R. Acad. Sci. Paris 273 (1971), 572-574.
  6. J. Bochner, Partial differential equations and analytic continuation, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 227-230.
  7. J. M. Bony et P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95-105.
  8. J. M. Bony et P. Schapira, Solutions hyperfonctions du problème de Cauchy, in: Lecture Notes in Math. 287, Springer, 1973, 82-98.
  9. L. A. Chudov, On singularities of solutions of linear partial differential equations with constant coefficients, Dokl. Akad. Nauk SSSR 125 (1959), 504-507 (in Russian).
  10. L. Ehrenpreis, A new proof and extension of Hartogs' theorem, Bull. Amer. Math. Soc. 67 (1961), 507-509.
  11. L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, 1970.
  12. R. Finn, Isolated singularities of solutions of non-linear partial differential equations, Trans. Amer. Math. Soc. 75 (1953), 385-403.
  13. E. A. Gorin and V. V. Grushin, On some local theorem for partial differential equations with constant coefficients, Trudy Moskov. Mat. Obshch. 14 (1965), 200-210 (in Russian).
  14. V. V. Grushin, On the Q-hypoelliptic equations, Mat. Sb. 57 (1962), 233-240 (in Russian).
  15. >V. V. Grushin, On solutions with isolated singularities for partial differential equations with constant coefficients, Trudy Moskov. Mat. Obshch. 15 (1966), 262-278 (in Russian).
  16. F. Hartogs, Einige Folgerungen aus der Cauchyschen Integralformel bei Funktionen mehrerer Veränderlichen, Sitzb. Münchener Acad. 36 (1906), 223-241.
  17. F. Hartogs, Über die aus den singulären Stellen einer analytischen Funktion mehrerer Veränderlichen bestehenden Gebilde, Acta Math. 32 (1908), 57-79.
  18. R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations, ibid. 125 (1970), 39-56.
  19. L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-182.
  20. F. John, Plane Waves and Spherical Means, Interscience, 1955.
  21. A. Kaneko, On continuation of regular solutions of partial differential equations to compact convex sets, J. Fac. Sci. Univ. Tokyo Sect. 1A 17 (1970), 567-580; II, ibid. 18 (1972), 415-433.
  22. A. Kaneko, On continuation of regular solutions of partial differential equations with constant coefficients, J. Math. Soc. Japan 26 (1974), 92-123.
  23. A. Kaneko, Note on continuation of real analytic solutions of partial differential equations with constant coefficients, Proc. Japan Acad. 51 (1975), 262-264.
  24. A. Kaneko, Singular spectrum of boundary values of solutions of partial differential equations with real analytic coefficients, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 25 (1975), 59-68.
  25. A. Kaneko, On continuation of regular solutions of linear partial differential equations, Publ. RIMS Kyoto Univ. 12 Suppl. (1977), 113-121.
  26. A. Kaneko, Prolongement des solutions régulières de l'équation aux dérivées partielles à coefficients constants, Séminaire Goulaouic-Schwartz, 1976/7, Exposé no 18.
  27. A. Kaneko, Estimation of singular spectrum of boundary values for some semi-hyperbolic operators, J. Fac. Sci. Univ. Tokyo Sec. 1A 27 (1980), 401-461.
  28. A. Kaneko, On continuation of real analytic solutions of linear partial differential equations, Astérisque 89-90 (1981), 11-44.
  29. A. Kaneko, On the propagation of micro-analyticity along the boundary, J. Fac. Sci. Univ. Tokyo Sect. 1A 29 (1982), 319-352.
  30. A. Kaneko, Continuation of real analytic solutions to convex conical singularities, Sûrikaisekikenkyûsho Kôkyûroku 592 (1986), 149-172 (in Japanese).
  31. A. Kaneko, On the analyticity of the locus of singularity of real analytic solutions with minimal dimension, Nagoya Math. J. 104 (1986), 63-84.
  32. A. Kaneko, Nishino-Yamaguchi theory and its application to the theory hyperfunctions, in: Proc. 7th Daewoo Workshop on Pure Math., Seoul, 1987, 241-261.
  33. A. Kaneko, On Hartogs type continuation theorem for regular solutions of linear partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo 35 (1988), 1-26.
  34. A. Kaneko, Hartogs type extension theorem of real analytic solutions of linear partial differential equations with constant coefficients, in: Advances in the Theory of Fréchet Spaces, Kluwer, 1989, 63-72.
  35. A. Kaneko, Introduction to Hyperfunctions, Kluwer, Tokyo 1988.
  36. A. Kaneko, Analyticité du lieu de singularité de dimension minimale d'une solution analytique réelle, in: Geometrical and Algebraical Aspects in Several Complex Variables, Editel, Rende, 1991, 155-167.
  37. K. Kataoka, Micro-local theory of boundary value problems II, J. Fac. Sci. Univ. Tokyo Sect. 1A 28 (1981), 31-56.
  38. T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, ibid. 17 (1970), 467-517.
  39. T. Kawai, Removable singularities of solutions of systems of linear differential equations, Bull. Amer. Math. Soc. 81 (1975), 461-463.
  40. T. Kawai, Extension of solutions of systems of linear differential equations, Publ. RIMS Kyoto Univ. 12 (1976), 215-227.
  41. T. Kawai, A differential equation theoretic interpretation of a geometric result of Hartogs, Proc. Amer. Math. Soc. 98 (1986), 222-224.
  42. C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329-356.
  43. H. Komatsu, Relative cohomology of sheaves of solutions of differential equations, Séminaire Lions-Schwartz, 1966-67 (reprinted in: Lecture Notes in Math. 287, Springer, 1973, 192-261).
  44. H. Komatsu and T. Kawai, Boundary values of hyperfunction solutions of linear partial differential equations, Publ. RIMS Kyoto Univ. 7 (1971), 95-104.
  45. W. Littman, Polar sets and removable singularities of partial differential equations, Ark. Mat. 7 (1967), 1-9.
  46. B. Malgrange, Sur la propagation de la régularité des solutions des équations à coefficients constants, Bull. Math. Soc. Roumanie 3 (1959), 433-440.
  47. B. Malgrange, Sur les systèmes différentiels à coefficients constants, Séminaire Leray, 1961-62.
  48. A. Meril et D. C. Struppa, Phénomène de Hartogs et équations de convolution, Séminaire Lelong-Skoda, 1985-86, Lecture Notes in Math. 1295, Springer, 146-156.
  49. T. Ôaku, Boundary value problems for systems of linear partial differential equations and propagation of micro-analyticity, J. Fac. Sci. Univ. Tokyo Sect. 1A 33 (1986), 175-232.
  50. T. Ôaku, Removable singularities of solutions of linear partial differential equations--systems and Fuchsian equations, ibid., 403-428.
  51. K. Oka, Note sur les familles de fonctions analytiques multiformes etc., J. Hiroshima Univ. 4 (1934), 93-98.
  52. V. P. Palamodov, Linear Differential Equations with Constant Coefficients, Nauka, Moscow 1967 (in Russian; English translation 1970 from Springer; Japanese translation 1972-73 from Yoshioka, Kyoto).
  53. Ph. Pallu de la Barrière, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, C. R. Acad. Sci. Paris 279 (1974), 947-949.
  54. J. Presson, Local analytic continuation of holomorphic solutions of partial differential equations, Ann. Mat. Pura Appl. 112 (1977), 193-204.
  55. J. Presson, On the analytic continuation of holomorphic solutions of partial differential equations, Ark. Mat. 19 (1981), 177-191.
  56. J. C. Polking, A survey of removable singularities, in: Seminar on Non-linear Partial Differential Equations, S. S. Chern (ed.), Springer, 1984, 261-292.
  57. B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Gesam. Math. Werke, 3-48.
  58. A. Sadullaev and E. M. Chirka, On continuation of functions with polar singularities, Mat. Sb. 132 (1987), 383-390.
  59. P. Schapira, Propagation au bord et reflexion des singularités analytiques des équations aux dérivées partielles II, Séminaire Goulaouic-Schwartz 1976-77, exposé no. 9.
  60. P. Schapira, Propagation at the boundary of analytic singularities, in: Proceedings NATO Symposium Maratea, Reidel, 1980, 185-212.
  61. P. Schapira, Propagation of analytic singularities up to non smooth boundaries, in: Colloque E.D.P. Saint-Jean de Monts, 1987.
  62. F. Severi, Una proprietà fondamentale dei campi di olomorfismo di una funzione analitica di una variabile reale e di una variabile complessa, Rend. R. Accad. Lincei 15 (1932), 487-490.
  63. D. Struppa, The first eighty years of Hartogs theorem, in: Seminari di Geometria 1987-88, Univ. di Bologna, 127-209.
  64. S. Tajima, Analyse microlocale sur les variétés de Cauchy-Riemann et le problème du prolongement des solutions holomorphes des équations aux dérivées partielles, Publ. RIMS Kyoto Univ. 18 (1982), 911-945.
  65. Y. Tsuno, On the prolongation of local holomorphic solutions of partial differential equations, J. Math. Soc. Japan 26 (1974), 523-548.
  66. Y. Tsuno, On the prolongation of local holomorphic solutions of non-linear partial differential equations, ibid. 27 (1975), 454-466.
  67. Y. Tsuno, Analytic continuation of holomorphic solutions of partial differential equations, Sûrikaiseki-Kenkyûsho Kôkyûroku 281 (1976), 120-162 (in Japanese).
  68. M. Uchida, Continuation of analytic solutions to linear partial differential equations up to convex conical singularities, preprint.
  69. M. Uchida and G. Zampieri, Second microlocalization at the boundary and microhyperbolicity, Publ. RIMS Kyoto Univ. 26 (1990), 205-219.
  70. G. Zampieri, Propagation of microanalyticity at the boundary for solutions of linear differential equations, J. Fac. Sci. Univ. Tokyo Sect. 1A 33 (1986), 429-439.
  71. M. Zerner, Domaine d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646-1648.
Pages:
183-195
Main language of publication
English
Published
1992
Exact and natural sciences