ArticleOriginal scientific text

Title

On some variational inequalities for nonclassical type operators

Authors 1

Affiliations

  1. Institute of Mathematics, Russian Academy of Sciences, Siberian Branch, Universitetskiĭ Prosp. 4, 630090 Novosibirsk, Russia

Abstract

The purpose of this paper is to make a brief review of results obtained in the theory of variational inequalities for nonclassical operators, namely, of degenerate hyperbolic and variable type.

Bibliography

  1. A. B. Aliev, Variational inequalities for quasilinear hyperbolic type operators, Mat. Zametki 42 (3) (1987), 369-380 (in Russian).
  2. A. B. Aliev, One sided problems for quasilinear hyperbolic operators in function spaces, Dokl. Akad. Nauk SSSR 297 (2) (1987), 271-275 (in Russian).
  3. A. B. Aliev, Global solvability of one-sided problems for quasilinear hyperbolic type equations, ibid. 298 (5) (1988), 1033-1036 (in Russian).
  4. G. Duvaut et J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris 1972.
  5. S. Glazatov, On a class of quasilinear hyperbolic inequalities, in: Some Applications of Functional Analysis to Problems of Mathematical Physics, Inst. Math., Siberian Branch Acad. Sci. U.S.S.R., Novosibirsk 1990, 67-80 (in Russian).
  6. S. Glazatov, A variational inequality connected with a variable type nonlinear equation, in: Dynamics of Continuous Media 99, Inst. Hydrodynamics, Siberian Branch Acad. Sci. U.S.S.R., Novosibirsk 1990, 18-33 (in Russian).
  7. S. Klainerman and A. Majda, Formation of singularities for wave equations, Comm. Pure Appl. Math. 33 (1980), 241-264.
  8. R. Landes, Quasilinear hyperbolic variational inequalities, Arch. Rational Mech. Anal. 91 (3) (1986), 267-272.
  9. N. A. Lar'kin, On global solutions of nonlinear hyperbolic inequalities, Dokl. Akad. Nauk SSSR 250 (4) (1980), 806-809 (in Russian).
  10. N. A. Lar'kin, A one-sided problem for a nonlocal quasilinear hyperbolic equation arising in the theory of elasticity, ibid. 274 (6) (1984), 1341-1344 (in Russian).
  11. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969.
  12. F. G. Maksudov, A. B. Aliev and D. M. Takhirov, A one-sided problem for a quasilinear equation of hyperbolic type, Dokl. Akad. Nauk SSSR 258 (4) (1981), 789-791 (in Russian).
  13. S. Pyatkov, Solvability of boundary value problems for a nonlinear degenerate elliptic equation, in: Applications of Functional Analysis to Nonclassical Equations of Mathematical Physics, Inst. Math., Siberian Branch Acad. Sci. U.S.S.R., Novosibirsk 1988, 102-117 (in Russian).
Pages:
169-174
Main language of publication
English
Published
1992
Exact and natural sciences