ArticleOriginal scientific text

Title

Existence of global solution of a nonlinear wave equation with short-range potential

Authors 1, 1

Affiliations

  1. Section of Mathematical Physics, Institute of Mathematics, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl. 8, 1113 Sofia, Bulgaria

Bibliography

  1. P. Datti, Long time existence of classical solutions to a non-linear wave equation in exterior domains, Ph.D. Dissertation, New York University, 1985.
  2. P. Godin, Long time behaviour of solutions to some nonlinear rotation invariant mixed problems, Comm. Partial Differential Equations 14 (3) (1989), 299-374.
  3. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Distribution Theory and Fourier Analysis, Springer, New York 1983.
  4. L. Hörmander, Non-linear Hyperbolic Differential Equations, Lectures 1986-1987, Lund 1988.
  5. F. John, Blow-up for quasi-linear wave equations in three space dimensions, Comm. Pure Appl. Math. 34 (1981), 20-51.
  6. S. Klainerman, The null condition and global existence to nonlinear wave equations, in: Lectures in Appl. Math. 23, Part 1, Amer. Math. Soc., Providence, R.I., 1986, 293-326.
  7. S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332.
  8. C. Morawetz, Energy decay for star-shaped obstacles, Appendix 3 in: P. Lax and R. Phillips, Scattering Theory, Academic Press, New York 1967.
  9. H. Pecher, Scattering for semilinear wave equations with small initial data in three space dimensions, Math. Z. 198 (1988), 277-288.
  10. Y. Shibata and Y. Tsutsumi, On global existence theorem of small amplitude solutions for nonlinear wave equations in exterior domains, ibid. 191 (1986), 165-199.
Pages:
163-167
Main language of publication
English
Published
1992
Exact and natural sciences