ArticleOriginal scientific text
Title
Differential operators of the first order with degenerate principal symbols
Authors 1
Affiliations
- Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, Ostenstr. 28, D-8078 Eichstätt, Germany
Abstract
Let there be given a differential operator on of the form , where is a real matrix and μ is a complex number. We study the following question: To what extent the mapping is surjective? We shall give some conditions on A and μ which assure the surjectivity of D.
Bibliography
- R. Felix, Solvability of differential equations with linear coefficients of nilpotent type, Proc. Amer. Math. Soc. 94 (1985), 161-166.
- R. Felix, Zentrale Distributionen auf Exponentialgruppen, J. Reine Angew. Math. 389 (1988), 133-156.
- G. B. Folland, Real Analysis. Modern Techniques and Their Applications, Wiley, New York 1984.
- L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568.
- L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin 1983.
- D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups II, preprint.
- H. H. Schaefer, Topological Vector Spaces, 5th printing, Springer, New York 1986.
- L. Schwartz, Théorie des distributions, Hermann, Paris 1966.