ArticleOriginal scientific text

Title

Differential operators of the first order with degenerate principal symbols

Authors 1

Affiliations

  1. Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, Ostenstr. 28, D-8078 Eichstätt, Germany

Abstract

Let there be given a differential operator on n of the form D=n_{i,j=1}aij·xjxi+μ, where A=(aij) is a real matrix and μ is a complex number. We study the following question: To what extent the mapping D:S(n)S(n) is surjective? We shall give some conditions on A and μ which assure the surjectivity of D.

Bibliography

  1. R. Felix, Solvability of differential equations with linear coefficients of nilpotent type, Proc. Amer. Math. Soc. 94 (1985), 161-166.
  2. R. Felix, Zentrale Distributionen auf Exponentialgruppen, J. Reine Angew. Math. 389 (1988), 133-156.
  3. G. B. Folland, Real Analysis. Modern Techniques and Their Applications, Wiley, New York 1984.
  4. L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568.
  5. L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin 1983.
  6. D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups II, preprint.
  7. H. H. Schaefer, Topological Vector Spaces, 5th printing, Springer, New York 1986.
  8. L. Schwartz, Théorie des distributions, Hermann, Paris 1966.
Pages:
147-161
Main language of publication
English
Published
1992
Exact and natural sciences