ArticleOriginal scientific text
Title
Some properties of exponentially harmonic maps
Authors 1, 2
Affiliations
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, England, I.C.T.P., P.O. Box 586, 34 100 Trieste, Italy
- Département de Mathématique, Université Libre de Bruxelles, Campus Plaine C.P. 218, Boulevard du Triomphe, 1050 Bruxelles, Belgium
Bibliography
- G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561.
- G. Aronsson, On certain singular solutions of the partial differential equation
, Manuscripta Math. 47 (1984), 133-151. - P. Baird and J. , Eells, A conservation law for harmonic maps, in: Geometry Symp. Utrecht 1980, Lecture Notes in Math. 894, Springer 1981, 1-25.
- M. Carpenter, The calculus of variations on a Riemannian manifold: regularity theory and the status of the Euler-Lagrange necessary condition, M.Sc. dissertation, Warwick 1991.
- D. M. Duc and J. Eells, Regularity of exponentially harmonic functions, Internat. J. Math., to appear.
- J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conf. Ser. Math. 50, Amer. Math. Soc., 1983.
- J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
- M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Theory, Ann. of Math. Stud. 105, Princeton Univ. Press 1983.
- C. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss. 130, Springer, 1966.
- R. Schoen, Analytic aspects of the harmonic map problem, in: Math. Sci. Res. Inst. Publ. 2, Springer, 1984, 321-358.
- J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London A 264 (1969), 413-496.
- L. M. Sibner and R. J. Sibner, A non-linear Hodge-de Rham theorem, Acta Math. 125 (1970), 57-73.
- R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229-236.