ArticleOriginal scientific text

Title

Some properties of exponentially harmonic maps

Authors 1, 2

Affiliations

  1. Mathematics Institute, University of Warwick, Coventry CV4 7AL, England, I.C.T.P., P.O. Box 586, 34 100 Trieste, Italy
  2. Département de Mathématique, Université Libre de Bruxelles, Campus Plaine C.P. 218, Boulevard du Triomphe, 1050 Bruxelles, Belgium

Bibliography

  1. G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561.
  2. G. Aronsson, On certain singular solutions of the partial differential equation u2_xu×+2uxuyuxy+u2_yuyy=0, Manuscripta Math. 47 (1984), 133-151.
  3. P. Baird and J. , Eells, A conservation law for harmonic maps, in: Geometry Symp. Utrecht 1980, Lecture Notes in Math. 894, Springer 1981, 1-25.
  4. M. Carpenter, The calculus of variations on a Riemannian manifold: regularity theory and the status of the Euler-Lagrange necessary condition, M.Sc. dissertation, Warwick 1991.
  5. D. M. Duc and J. Eells, Regularity of exponentially harmonic functions, Internat. J. Math., to appear.
  6. J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conf. Ser. Math. 50, Amer. Math. Soc., 1983.
  7. J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
  8. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Theory, Ann. of Math. Stud. 105, Princeton Univ. Press 1983.
  9. C. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss. 130, Springer, 1966.
  10. R. Schoen, Analytic aspects of the harmonic map problem, in: Math. Sci. Res. Inst. Publ. 2, Springer, 1984, 321-358.
  11. J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London A 264 (1969), 413-496.
  12. L. M. Sibner and R. J. Sibner, A non-linear Hodge-de Rham theorem, Acta Math. 125 (1970), 57-73.
  13. R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229-236.
Pages:
129-136
Main language of publication
English
Published
1992
Exact and natural sciences