ArticleOriginal scientific text

Title

Kobayashi-Royden vs. Hahn pseudometric in ℂ²

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

For a domain D ⊂ ℂ the Kobayashi-Royden ϰ and Hahn h pseudometrics are equal iff D is simply connected. Overholt showed that for Dn, n ≥ 3, we have hDϰD. Let D₁, D₂ ⊂ ℂ. The aim of this paper is to show that hD×D iff at least one of D₁, D₂ is simply connected or biholomorphic to ℂ \ {0}. In particular, there are domains D ⊂ ℂ² for which hDϰD.

Keywords

Hahn pseudometric, Kobayashi pseudometric

Bibliography

  1. [Cho] K. S. Choi, Injective hyperbolicity of product domain, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 5 (1998), 73-78.
  2. [Hah] K. T. Hahn, Some remark on a new pseudo-differential metric, Ann. Polon. Math. 39 (1981), 71-81.
  3. [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math. 9, de Gruyter, Berlin, 1993.
  4. [Ove] M. Overholt, Injective hyperbolicity of domains, Ann. Polon. Math. 62 (1995), 79-82.
  5. [Roy] H. L. Royden, Remarks on the Kobayashi metric, in: Several Complex Variables, II, Lecture Notes in Math. 189, Springer, 1971, 125-137.
  6. [Two-Win] P. Tworzewski and T. Winiarski, Continuity of intersection of analytic sets, Ann. Polon. Math. 42 (1983), 387-393.
  7. [Ves] E. Vesentini, Injective hyperbolicity, Ricerche Mat. 36 (1987), 99-109.
  8. [Vig] J.-P. Vigué, Une remarque sur l'hyperbolicité injective, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83 (1989), 57-61.
Pages:
289-294
Main language of publication
English
Received
2000-10-03
Published
2000
Exact and natural sciences