ArticleOriginal scientific text

Title

Multiple positive solutions to singular boundary value problems for superlinear second order FDEs

Authors 1

Affiliations

  1. Department of Mathematics, Northeast Normal University, Changchun 130024, P.R. China

Abstract

We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.

Keywords

superlinear, fixed point theorem, singular boundary value problem, existence

Bibliography

  1. R. P. Agarwal and D. O'Regan, Singular boundary value problems for superlinear second ordinary and delay differential equations, J. Differential Equations 130 (1996), 335-355.
  2. R. P. Agarwal and D. O'Regan, Nonlinear superlinear singular and nonsingular second order boundary value problems, ibid. 143 (1998), 60-95.
  3. J. V. Baxley, A singular nonlinear boundary value problem: Membrane response of a spherical cap, SIAM J. Appl. Math. 48 (1988), 497-505.
  4. L. E. Bobisud, D. O'Regan and W. D. Royalty, Singular boundary value problems, Appl. Anal. 23 (1986), 233-243.
  5. J. E. Bouillet and S. M. Gomes, An equation with a singular nonlinearity related to diffusion problems in one dimension, Quart. Appl. Math. 42 (1985), 395-402.
  6. A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), 96-105.
  7. L. H. Erbe and Q. K. Kong, Boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 53 (1994), 377-388.
  8. L. H. Erbe, Q. K. Kong and B. G. Zhang, Oscillation Theory and Boundary Value Problems in Functional Differential Equations, Dekker, New York, 1995.
  9. L. H. Erbe, Z. C. Wang and L. T. Li, Boundary value problems for second order mixed type functional, differential equations, in: Boundary Value Problems for Functional Differential Equations, World Sci., 1995, 143-151.
  10. J. A. Gatica, G. E. Hernandez and P. Waltman, Radially symmetric solutions of a class of singular elliptic equations, Proc. Edinburgh Math. Soc. 33 (1990), 168-180.
  11. J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second order differential equations, J. Differential Equations 79 (1989), 62-78.
  12. S. M. Gomes and J. Sprekels, Krasonselskii's Theorem on operators compressing a cone: Application to some singular boundary value problems, J. Math. Anal. Appl. 153 (1990), 443-459.
  13. J. Janus and J. Myjak, A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal. 23 (1994), 953-970.
  14. D. Q. Jiang and J. Y. Wang, On boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 116 (2000), 231-241.
  15. D. Q. Jiang and P. X. Weng, Existence of positive solutions for boundary value problems of second-order functional differential equations, Electron. J. Qual. Theory Differ. Equ. 1998, no. 6, 13 pp.
  16. M. A. Krasnosel'skiĭ, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
  17. B. S. Lalli and B. G. Zhang, Boundary value problems for second order functional differential equations, Ann. Differential Equations 8 (1992), 261-268.
  18. J. W. Lee and D. O'Regan, Existence results for differential delay equations - I, J. Differential Equations 102 (1993), 342-359.
  19. J. W. Lee and D. O'Regan, Existence results for differential delay equations - II, Nonlinear Anal. 17 (1991), 683-702.
  20. A. Nachman and A. Callegari, A nonlinear boundary value problems in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
  21. S. K. Ntouyas, Y. G. Sficas and P. C. Tsamatos, An existence principle for boundary value problems for second order functional-differential equations, Nonlinear Anal. 20 (1993), 215-222.
  22. D. O'Regan, Positive solutions to singular and nonsingular second-order boundary value problems, J. Math. Anal. Appl. 142 (1989), 40-52.
  23. D. O'Regan, Singular Dirchlet boundary value problems - I, superlinear and nonresonant case, Nonlinear Anal. 29 (1997), 221-245.
  24. S. D. Taliaferro, A nonlinear singular boundary value problem, ibid. 3 (1979), 897-904.
  25. C. J. Van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation ut=(|u|m-1ux)x with m > -1, IMA J. Appl. Math. 41 (1988), 147-163.
  26. J. Y. Wang, A two-point boundary value problem with singularity, Northeast. Math. J. 3 (1987), 281-291.
  27. J. Y. Wang, A free boundary problem for a generalized diffusion equation, Nonlinear Anal. 14 (1990), 691-700.
  28. J. Y. Wang, On positive solutions of singular nonlinear two-point boundary problems, J. Differential Equations 107 (1994), 163-174.
  29. J. Y. Wang, Solvability of singular nonlinear two-point boundary problems, Nonlinear Anal. 24 (1995), 555-561.
  30. J. Y. Wang and W. J. Gao, A singular boundary value problem for the one-dimensional p-Laplacian, J. Math. Anal. Appl. 201 (1996), 851-866.
  31. J. Y. Wang and J. Jiang, The existence of positive solutions to a singular nonlinear boundary value problem, ibid. 176 (1993), 322-329.
  32. H. J. Weinischke, On finite displacement of circular elastic membranes, Math. Methods Appl. Sci. 9 (1987), 76-98.
  33. P. X. Weng, Boundary value problems for second order mixed-type functional-differential equations, Appl. Math. J. Chinese Univ. Ser. B 12 (1997), 155-164.
  34. P. X. Weng and D. Q. Jiang, Existence of positive solutions for boundary value problem of second-order FDE, Comput. Math. Appl. 37 (1999), 1-9.
Pages:
257-270
Main language of publication
English
Received
2000-04-04
Published
2000
Exact and natural sciences