Faculty of Electrical Engineering, Technical University of Lublin, Nadbystrzycka 38A, P.O. Box 189, 20-618 Lublin, Poland
Bibliografia
[A-S] G. R. Allan and A. M. Sinclair, Power factorization in Banach algebras with a bounded approximate identity, Studia Math. 56 (1976), 31-38.
[A;1] M. Altman, Factorisation dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 272 (1971), 1388-1389.
[A;2] M. Altman, Infinite products and factorization in Banach algebras, Boll. Un. Mat. Ital. 5 (1972), 217-229.
[A;3] M. Altman, Contracteurs dans les algèbres de Banach, C. R. Acad. Sci. Paris Sér. A 274 (1972), 399-400.
[A;4] M. Altman, Contractors, approximate identities and factorization in Banach algebras, Pacific J. Math. 48 (1973), 323-334.
[A;5] M. Altman, A generalization and the converse of Cohen's factorization theorem, Duke Math. J. 42 (1975), 105-110.
[AP] E. Ansari-Piri, A class of factorable topological algebras, Proc. Edinburgh Math. Soc. 33 (1990), 53-59.
[B-D] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1979.
[C] P. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205.
[C-S] H. S. Collins and W. H. Summers, Some applications of Hewitt's factorization theorem, Proc. Amer. Math. Soc. 21 (1969), 727-733.
[Cr] I. G. Craw, Factorization in Fréchet algebras, J. London Math. Soc. 44 (1969), 607-611.
[C-FT] P. C. Curtis, Jr. and A. Figà-Talamanca, Factorization theorems for Banach algebras, in: Function Algebras, F. T. Birtel (ed.), Scott, Foresman and Co., Chicago, IL, 1966, 169-185.
[C-St] P. C. Curtis, Jr. and H. Stetkaer, A factorization theorem for anatytic functions operating in a Banach algebra, Pacific J. Math. 37 (1971), 337-343.
[D-M] J. Dixmier et P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), 305-330.
[D] P. G. Dixon, Automatic continuity of positive functionals on topological involution algebras, Bull. Austral. Math. Soc. 23 (1981), 265-281.
[D-W] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer, 1979.
[E;I] R. E. Edwards, Fourier Series, a Modern Introduction, Vol. I, 2nd ed., Springer, 1979.
[E;II] R. E. Edwards, Fourier Series, a Modern Introduction, Vol. II, 2nd ed., Springer, 1982.
[Es;1] J. Esterle, Injection de semi-groupes divisibles dans des algèbres de convolution et construction d'homomorphismes discontinus de C(K), Proc. London Math. Soc. (3) 36 (1978), 59-85.
[Es;2] J. Esterle, A complex-variable proof of the Wiener tauberian theorem, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 2, 91-96.
[Es;3] J. Esterle, Elements for a classification of commutative radical Banach algebras, in: Proc. Conf. on Radical Banach Algebras and Automatic Continuity (Long Beach, 1981), J. M. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 4-65.
[Es;4] J. Esterle, Mittag-Leffler method in the theory of Banach algebras and a new approach to Michael's problem, in: Banach Algebras and Several Complex Variables, F. Greenleaf and D. Gulick (eds.), Contemp. Math. 32, Amer. Math. Soc., 1984, 107-129.
[F-L] H. G. Feichtinger and M. Leinert, Individual factorization in Banach modules, Colloq. Math. 51 (1987), 107-117.
[G-R] J. E. Galé and T. J. Ransford, On the growth of analytic semigroups along vertical lines, Studia Math. 138 (2000), 165-177.
[G-W] J. E. Galé and M. C. White, An analytic semigroup version of the Beurling-Helson theorem, Math. Z. 225 (1997), 151-165.
[G] N. Grønbæk, Power factorization in Banach modules over commutative radical Banach algebras, Math. Scand. 50 (1982), 123-134.
[G-L-R] S. L. Gulick, T. S. Liu and A. C. M. van Rooij, Group algebra modules. II, Canad. J. Math. 19 (1967), 151-173.
[H] E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964), 147-155.
[H-R;II] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume II, Structure and Analysis on Compact Groups, Analysis on Locally Compact Abelian Groups, 3rd printing, Springer, 1997.
[J] B. E. Johnson, Continuity of centralizers on Banach algebras, J. London Math. Soc. 41 (1966), 639-640.
[K] P. Koosis, Sur un théorème de Paul Cohen, C. R. Acad. Sci. Paris 259 (1964), 1380-1382.
[K-V] J. Křížková and P. Vrbová, A remark on a factorization theorem, Comment. Math. Univ. Carolin. 15 (1974), 611-614.
[L] M. Leinert, A commutative Banach algebra which factorizes but has no approximate units, Proc. Amer. Math. Soc. 55 (1976), 345-346.
[Ou] S. I. Ouzomgi, Factorization and automatic continuity for an algebra of infinitely differentiable functions, J. London Math. Soc. (2) 30 (1984), 265-280.
[O] J.-L. Ovaert, Factorisation dans les algèbres et modules de convolution, C. R. Acad. Sci. Paris Sér. A 265 (1967), 534-535.
[Pal] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Volume I, Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, 1994.
[Pas] W. L. Paschke, A factorable Banach algebra without bounded approximate unit, Pacific J. Math. 46 (1973), 249-251.
[P-V] H. Petzeltová and P. Vrbová, Factorization in the algebra of rapidly decreasing functions on $R_n$, Comment. Math. Univ. Carolin. 19 (1978), 489-499.
[P-P] F. A. Potra and V. Pták, Nondiscrete Induction and Iterative Processes, Res. Notes in Math. 103, Pitman, 1984.
[P;1] V. Pták, Un théorème de factorisation, C. R. Acad. Sci. Paris Sér. A 275 (1972), 1297-1299.
[P;2] V. Pták, Deux théorèmes de factorisation, ibid. 278 (1974), 1091-1094.
[P;3] V. Pták, Factorization in Banach algebras, Studia Math. 65 (1979), 279-285.
[Ri] M. Rieffel, On the continuity of certain intertwining operators, centralizers, and positive linear functionals, Proc. Amer. Math. Soc. 20 (1969), 455-457.
[R;1] W. Rudin, Factorization in the group algebra of the real line, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 339-340.
[R;2] W. Rudin, Representation of functions by convolutions, J. Math. Mech. 7 (1958), 103-115.
[S] R. Salem, Sur les transformations des séries de Fourier, Fund. Math. 33 (1939), 108-114.
[S-T] F. D. Sentilles and D. C. Taylor, Factorization in Banach algebras and the general strict topology, Trans. Amer. Math. Soc. 142 (1969), 141-152.
[S;1] A. M. Sinclair, Bounded approximate identities, factorization, and a convolution algebra, J. Funct. Anal. 29 (1978), 308-318.
[S;2] A. M. Sinclair, Cohen's factorization method using an algebra of analytic functions, Proc. London Math. Soc. 39 (1979), 451-468.
[S;3] A. M. Sinclair, Cohen elements in Banach algebras, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 55-70.
[S;4] A. M. Sinclair, Continuous Semigroups in Banach Algebras, London Math. Soc. Lecture Note Ser. 63, Cambridge Univ. Press, 1982.
[M.K.S] M. K. Summers, Factorization in Fréchet modules, J. London Math. Soc. (2) 5 (1972), 243-248.
[W.H.S] W. H. Summers, Factorization in Fréchet spaces, Studia Math. 39 (1971), 209-216.
[T] D. C. Taylor, A characterization of Banach algebras with approximate unit, Bull. Amer. Math. Soc. 74 (1968), 761-766.
[V] N. T. Varopoulos, Sur les formes positives d'une algèbre de Banach, C. R. Acad. Sci. Paris Sér. A 258 (1964), 2465-2467.
[Vo;1] J. Voigt, Factorization in some Fréchet algebras of differentiable functions, Studia Math. 78 (1984), 333-347.
[Vo;2] J. Voigt, Factorization in Fréchet algebras, J. London Math. Soc. (2) 29 (1984), 147-152.
[W] M. C. White, Strong Wedderburn decompositions of Banach algebras containing analytic semigroups, J. London Math. Soc. (2) 49 (1994), 331-342.
[Z;I] A. Zygmund, Trigonometric Series, Vol. I, 2nd ed., Cambridge Univ. Press, 1959.
[Ż] W. Żelazko, Banach Algebras, Elsevier, Amsterdam, and PWN-Polish Sci. Publ., Warszawa, 1973.