ArticleOriginal scientific text

Title

On the coefficient bodies of meromorphic univalent functions omitting a disc

Authors 1

Affiliations

  1. Institute of Mathematics, University of Helsinki, Yliopistokatu 5, 00014 Helsinki, Finland

Abstract

Let S(b) be the class of bounded normalized univalent functions and Σ(b) the class of normalized univalent meromorphic functions omitting a disc with radius b. The close connection between these classes allows shifting the coefficient body information from the former to the latter. The first non-trivial body can be determined in Σ(b) as well as the next one in the real subclass ΣR(b).

Keywords

coefficient bodies, univalent functions

Bibliography

  1. Charzyński, Z.: and Janowski, W.:, Domaine de variation des coefficients A2 et A3 des functions univalentes et bornées, Bull. Soc. Sci. Lettres Łódź 10 (1959), no. 5.
  2. Jokinen, O.: and Tammi, O.:, On determining the points of the second coefficient body (a4,a3,a2) for bounded real univalent functions, Kodai Math. J. 17 (1994), 82-100.
  3. Kortram, R.: and Tammi, O.:, On the first coefficient regions of bounded univalent functions, Ann. Acad. Sci. Fenn. Ser. A I 592 (1974).
  4. Netanyahu, E.:, Extremal problems for schlicht functions in the exterior of the unit circle, Canad. J. Math. 17 (1965), 335-341.
  5. Schaeffer, A. C. : and Spencer, D. C.:, Coefficient Regions for Schlicht Functions, Amer. Math. Soc. Colloq. Publ. 35, 1950.
  6. Siejka, H.:, On meromorphic univalent functions omitting a disc, Israel J. Math. 54 (1986), 291-299.
  7. Śladkowska, J.:, Estimations of the second coefficient of a univalent, bounded, symmetric and non-vanishing function by means of Loewner's parametric method, Ann. Polon. Math. 68 (1998), 119-123.
  8. Tammi, O.:, Extremum Problems for Bounded Univalent Functions, Lecture Notes in Math. 646, Springer, Berlin, 1978.
  9. Tammi, O.: Extremum Problems for Bounded Univalent Functions II, Lecture Notes in Math. 913, Springer, Berlin, 1982.
  10. Tammi, O.: On the first coefficient bodies of bounded real non-vanishing univalent functions, Ann. Univ. Mariae Curie-Skłodowska 52 (1998), 177-190.
Pages:
47-58
Main language of publication
English
Received
1999-09-01
Accepted
2000-07-07
Published
2000
Exact and natural sciences