ArticleOriginal scientific text
Title
Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale
Authors 1
Affiliations
- LAMA, Université de Savoie, 73376 Le Bourget du Lac Cedex, France
Abstract
We prove that the set of asymptotic critical values of a function definable in an o-minimal structure is finite, even if the structure is not polynomially bounded. As a consequence, the function is a locally trivial fibration over the complement of this set.
Keywords
bifurcation set, asymptotic critical value, o-minimal structure
Bibliography
- J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. 36, Springer, 1998.
- L. van den Dries, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1988.
- L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math. 1524, Springer, 1992, 316-322.
- K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble) 48 (1998), 769-783.
- K. Kurdyka, T. Mostowski and A. Parusiński, Gradient conjecture in o-minimal structures, en préparation.
- K. Kurdyka, P. Orro and S. Simon, Semialgebraic Sard theorem for generalized critical values, preprint, Univ. Savoie, 1999.
- T. L. Loi and A. Zaharia, Bifurcation sets of functions definable in o-minimal structures, Illinois J. Math. 42 (1998), 449-457.
- C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259.
- R. S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132.
- A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
- P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997), 647-691.