ArticleOriginal scientific text

Title

Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale

Authors 1

Affiliations

  1. LAMA, Université de Savoie, 73376 Le Bourget du Lac Cedex, France

Abstract

We prove that the set of asymptotic critical values of a C1 function definable in an o-minimal structure is finite, even if the structure is not polynomially bounded. As a consequence, the function is a locally trivial fibration over the complement of this set.

Keywords

bifurcation set, asymptotic critical value, o-minimal structure

Bibliography

  1. J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. 36, Springer, 1998.
  2. L. van den Dries, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1988.
  3. L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
  4. K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math. 1524, Springer, 1992, 316-322.
  5. K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble) 48 (1998), 769-783.
  6. K. Kurdyka, T. Mostowski and A. Parusiński, Gradient conjecture in o-minimal structures, en préparation.
  7. K. Kurdyka, P. Orro and S. Simon, Semialgebraic Sard theorem for generalized critical values, preprint, Univ. Savoie, 1999.
  8. T. L. Loi and A. Zaharia, Bifurcation sets of functions definable in o-minimal structures, Illinois J. Math. 42 (1998), 449-457.
  9. C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259.
  10. R. S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132.
  11. A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
  12. P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997), 647-691.
Pages:
35-45
Main language of publication
French
Received
1999-07-28
Accepted
2000-02-10
Published
2000
Exact and natural sciences