ArticleOriginal scientific text

Title

Killing tensors and warped product

Authors 1

Affiliations

  1. Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Polan

Abstract

We present some examples of Killing tensors and give their geometric interpretation. We give new examples of non-compact complete and compact Riemannian manifolds whose Ricci tensor ϱ satisfies the condition Xϱ(X,X)=2n+2Xτg(X,X)

Keywords

Ricci tensor, Killing tensor, Einstein manifold, warped product

Bibliography

  1. [B] A. Besse, Einstein Manifolds, Springer, Berlin, 1987
  2. [D] A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z. 172 (1980), 273-280
  3. [G] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280.
  4. [H] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), 209-215.
  5. [J-1] W. Jelonek, On A-tensors in Riemannian geometry, preprint 551, Polish Academy of Sciences, 1995.
  6. [J-2] W. Jelonek, Killing tensors and Einstein-Weyl geometry, Colloq. Math. 81 (1999), 5-19.
  7. [K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York, 1963.
  8. [M-P-P-S] B. Madsen, H. Pedersen, Y. Poon and A. Swaan, Compact Einstein-Weyl manifolds with large symmetry group, Duke Math. J. 88 (1997), 407-434.
  9. [N] S. Nölker, Isometric immersions of warped products, Differential Geom. Appl. 6 (1996), 1-30.
  10. [O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
Pages:
15-33
Main language of publication
English
Received
1999-06-30
Accepted
2000-02-28
Published
2000
Exact and natural sciences