ArticleOriginal scientific text

Title

How to get rid of one of the weights in a two-weight Poincaré inequality?

Authors 1, 2

Affiliations

  1. Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato, 5, I-40127 Bologna, Italy
  2. Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland

Abstract

We prove that if a Poincaré inequality with two different weights holds on every ball, then a Poincaré inequality with the same weight on both sides holds as well.

Keywords

weights, doubling measures, metric spaces, Poincaré inequality

Bibliography

  1. D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033-1074.
  2. M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324.
  3. B. Bojarski, Remarks on Sobolev imbedding inequalities, in: Complex Analysis (Joensuu, 1987), Lecture Notes in Math. 1351, Springer 1988, 52-68.
  4. J. Boman, Lp-estimates for very strongly elliptic systems, report no 29, Dept. of Math., Univ. of Stockholm, 1982.
  5. S. M. Buckley, P. Koskela and G. Lu, Boman equals John, in: XVI Rolf Nevanlinna Colloquium (Joensuu,1995), de Gruyter, Berlin, 1996, 91-99.
  6. L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154.
  7. S. K. Chua, Weighted Sobolev inequalities on domains satisfying the chain condition, Proc. Amer. Math. Soc. 117 (1993), 449-457.
  8. B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise inequalities for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158.
  9. B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604.
  10. B. Franchi, P. Hajłasz and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903-1924.
  11. B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541.
  12. B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604.
  13. B. Franchi, G. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Mat. Res. Notices 1996, no. 1, 1-14.
  14. B. Franchi, C. Pérez and R. L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108-146.
  15. B. Franchi, C. Pérez and R. L. Wheeden, in preparation.
  16. B. Franchi and R. L. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, J. Inequalities Appl. 3 (1999), 65-89
  17. B. Franchi and R. L. Wheeden, Compensation couples and isoperimetric estimates for vector fields, Colloq. Math. 74 (1997), 1-27.
  18. J. García Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Math. Stud. 116, North-Holland, 1985.
  19. N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144.
  20. P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415.
  21. P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215.
  22. P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000).
  23. D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523.
  24. R. V. Kohn, New integral estimates for the deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal. 78 (1982), 131-172.
  25. E. Lanconelli and D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), 327-342.
  26. G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439.
  27. G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, ibid. 10 (1994), 453-466.
  28. P. Maheux et L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713-740.
  29. L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Mat. Res. Notices 1992, no. 2, 27-38.
Pages:
97-103
Main language of publication
English
Received
1999-04-30
Accepted
1999-07-20
Published
2000
Exact and natural sciences