ArticleOriginal scientific text
Title
How to get rid of one of the weights in a two-weight Poincaré inequality?
Authors 1, 2
Affiliations
- Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato, 5, I-40127 Bologna, Italy
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Abstract
We prove that if a Poincaré inequality with two different weights holds on every ball, then a Poincaré inequality with the same weight on both sides holds as well.
Keywords
weights, doubling measures, metric spaces, Poincaré inequality
Bibliography
- D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033-1074.
- M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324.
- B. Bojarski, Remarks on Sobolev imbedding inequalities, in: Complex Analysis (Joensuu, 1987), Lecture Notes in Math. 1351, Springer 1988, 52-68.
- J. Boman,
-estimates for very strongly elliptic systems, report no 29, Dept. of Math., Univ. of Stockholm, 1982. - S. M. Buckley, P. Koskela and G. Lu, Boman equals John, in: XVI Rolf Nevanlinna Colloquium (Joensuu,1995), de Gruyter, Berlin, 1996, 91-99.
- L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154.
- S. K. Chua, Weighted Sobolev inequalities on domains satisfying the chain condition, Proc. Amer. Math. Soc. 117 (1993), 449-457.
- B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise inequalities for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158.
- B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604.
- B. Franchi, P. Hajłasz and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903-1924.
- B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541.
- B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604.
- B. Franchi, G. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Mat. Res. Notices 1996, no. 1, 1-14.
- B. Franchi, C. Pérez and R. L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108-146.
- B. Franchi, C. Pérez and R. L. Wheeden, in preparation.
- B. Franchi and R. L. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, J. Inequalities Appl. 3 (1999), 65-89
- B. Franchi and R. L. Wheeden, Compensation couples and isoperimetric estimates for vector fields, Colloq. Math. 74 (1997), 1-27.
- J. García Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Math. Stud. 116, North-Holland, 1985.
- N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144.
- P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415.
- P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215.
- P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000).
- D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523.
- R. V. Kohn, New integral estimates for the deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal. 78 (1982), 131-172.
- E. Lanconelli and D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), 327-342.
- G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439.
- G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, ibid. 10 (1994), 453-466.
- P. Maheux et L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713-740.
- L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Mat. Res. Notices 1992, no. 2, 27-38.