ArticleOriginal scientific text

Title

Singular holomorphic functions for which all fibre-integrals are smooth

Authors 1, 2

Affiliations

  1. Université H. Poincaré (Nancy I) et, Institut Universitaire de France, Institut E. Cartan UHP/CNRS/INRIA, UMR 7502, Boîte postale 239, F-54506 Vandœuvre-lès-Nancy, France
  2. Section de Mathématiques, Université de Genève, Case postale 240, CH-1211 Genève 24, Switzerland

Abstract

For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals     sf=sϱωω¯,ϱC_{c}(X),ω,ωΩXn, are C on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are C. We study such maps and build a family of examples where also fibre-integrals for ω,ωX, the Grothendieck sheaf, are C.

Keywords

singularities, fibre-integrals, Mellin transform, currents

Bibliography

  1. [A-G-Z-V] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps II, Birkhäuser, 1988.
  2. [B 78] D. Barlet, Le faisceau ωX sur un espace analytique X de dimension pure, in: Lecture Notes in Math. 670, Springer, 1978, 187-204.
  3. [B 84] D. Barlet, Contribution effective de la monodromie aux développements asymptotiques, Ann. Sci. Ecole Norm. Sup. 17 (1984), 293-315.
  4. [B 85] D. Barlet, Forme hermitienne canonique sur la cohomologie de la fibre de Milnor d'une hypersurface à singularité isolée, Invent. Math. 81 (1985), 115-153.
  5. [B-M 89] D. Barlet and H.-M. Maire, Asymptotic expansion of complex integrals via Mellin transform, J. Funct. Anal. 83 (1989), 233-257.
  6. [B-M 99] D. Barlet and H.-M. Maire, Poles of the current |f|2λ over an isolated singularity, Internat. J. Math. (2000) (to appear).
  7. [L] F. Loeser, Quelques conséquences locales de la théorie de Hodge, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 75-92.
Pages:
65-77
Main language of publication
English
Received
1999-07-20
Published
2000
Exact and natural sciences