ArticleOriginal scientific text
Title
Integrable system of the heat kernel associated with logarithmic potentials
Authors 1
Affiliations
- Graduate School of Mathematics, Nagoya University, Furo-cho 1, Chikusa-ku, Nagoya, Japan
Abstract
The heat kernel of a Sturm-Liouville operator with logarithmic potential can be described by using the Wiener integral associated with a real hyperplane arrangement. The heat kernel satisfies an infinite-dimensional analog of the Gauss-Manin connection (integrable system), generalizing a variational formula of Schläfli for the volume of a simplex in the space of constant curvature.
Keywords
Wiener integral, logarithmic potentials, Feynman-Kac formula, integrable system
Bibliography
- L. Accardi, Vito Volterra and the development of functional analysis, in: Convegno Internazionale in memoria di Vito Volterra, Accademia Naz. dei Lincei, 1992, 151-181.
- K. Aomoto, Analytic structure of Schläfli function, Nagoya Math. J. 68 (1977), 1-16.
- K. Aomoto, Configurations and invariant Gauss-Manin connections of integrals I, II, Tokyo J. Math. 5 (1982), 249-287; 6 (1983), 1-24; Errata 22 (1999), 511-512.
- K. Aomoto, Formal integrable system attached to the statistical model of two dimensional vortices, in: Proc. Taniguchi Sympos. on Stochastic Differential Equations, 1985, 23-29.
- K. Aomoto, On some properties of the Gauss-ensemble of random matrices (integrable system), Adv. Appl. Math. 38 (1987), 385-399.
- K. Aomoto, Hypergeometric functions, The past, today, and ... (From the complex analytic point of view), Sugaku Expositions 9 (1996), 99-116.
- T. Hida, Brownian Motion, Springer, 1980.
- N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Chap. 5, North-Holland/Kodan-sha, 1981.
- K. Ito, Wiener integral and Feynman integral, in: Proc. 4th Berkeley Sympos., 1961, 227-238.
- M. Kac, Integration in Function Spaces and Some of Its Applications, Scuola Norm. Sup., Pisa, 1980.
- P. Lévy, Problèmes Concrets d'Analyse Fonctionnelle, Gauthier-Villars, Paris, 1951.
- M. L. Mehta, Random Matrices, 2nd ed., Academic Press, Boston, 1991.
- J. Milnor, The Schläfli differential equality, in: Collected Papers I: Geometry, Publish or Perish, Houston, TX, 1994, 281-295.
- P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer, 1992.
- L. Schläfli, On the multiple integral ∫∫...∫ whose limits are
and , Quart. J. Math. 3 (1860), 54-68, 97-108. - S. Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab. 15 (1987), 1-39.