ArticleOriginal scientific textSome constructive applications of
Title
Some constructive applications of -representations to integration of PDEs
Authors 1, 1
Affiliations
- Chair of Mathematics, Department of Physics, Moscow State University, Moscow, 119899, Russia
Abstract
Two new applications of -representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane . 2. Employing -representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.
Keywords
discrete net, -representations of PDEs, Lobachevsky (hyperbolic) geometry, pseudospherical metric
Bibliography
- M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
- E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945.
- A. G. Popov, The non-Euclidean geometry and differential equations, in: Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 297-308.
- E. G. Poznyak and A. G. Popov, Lobachevsky geometry and the equations of mathematical physics, Russian Acad. Sci. Dokl. Math. 48 (1994), 338-342.
- E. G. Poznyak and A. G. Popov, Non-Euclidean geometry: Gauss formula and PDE's interpretation, Itogi Nauki i Tekhniki (VINITI), Geometry 2 (1994), 5-24 (in Russian).
- E. G. Poznyak and A. G. Popov, Geometry of the sine-Gordon equation, Itogi Nauki i Tekhniki (VINITI), Problems of Geometry, 23 (1991), 99-130 (in Russian).
- E. G. Poznyak and A. G. Popov, The Sine-Gordon Equation: Geometry and Physics, Znanie, Moscow, 1991 (in Russian).
- E. G. Poznyak and E. V. Shikin, Differential Geometry, Moscow Univ. Press, Moscow, 1990 (in Russian).
- A. A. Samarskĭ, Theory of Difference Schemes, Nauka, Moscow, 1977 (in Russian).
- R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154 (1979), 343-357.
- A. S. Smogorzhevskiĭ, Geometric Constructions on the Lobachevsky Plane, Gostekhteorizdat, Moscow, 1951 (in Russian).
- L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in Soliton Theory, Nauka, Moscow, 1986 (in Russian).
- S. A. Zadadaev,
-representations of equations of mathematical physics and formulation of the spectral-evolutionary problem, Vestnik Moskov. Univ. Fiz. Astronom. 1998, no. 5, 29-32 (in Russian). - V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation is a completely integrable Hamiltonian system, Funktsional. Anal. i Prilozhen. 5 (1971), no. 4, 18-127 (in Russian).