ArticleOriginal scientific text

Title

Some constructive applications of Λ2-representations to integration of PDEs

Authors 1, 1

Affiliations

  1. Chair of Mathematics, Department of Physics, Moscow State University, Moscow, 119899, Russia

Abstract

Two new applications of Λ2-representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane Λ2. 2. Employing Λ2-representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.

Keywords

discrete net, Λ2-representations of PDEs, Lobachevsky (hyperbolic) geometry, pseudospherical metric

Bibliography

  1. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
  2. E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945.
  3. A. G. Popov, The non-Euclidean geometry and differential equations, in: Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 297-308.
  4. E. G. Poznyak and A. G. Popov, Lobachevsky geometry and the equations of mathematical physics, Russian Acad. Sci. Dokl. Math. 48 (1994), 338-342.
  5. E. G. Poznyak and A. G. Popov, Non-Euclidean geometry: Gauss formula and PDE's interpretation, Itogi Nauki i Tekhniki (VINITI), Geometry 2 (1994), 5-24 (in Russian).
  6. E. G. Poznyak and A. G. Popov, Geometry of the sine-Gordon equation, Itogi Nauki i Tekhniki (VINITI), Problems of Geometry, 23 (1991), 99-130 (in Russian).
  7. E. G. Poznyak and A. G. Popov, The Sine-Gordon Equation: Geometry and Physics, Znanie, Moscow, 1991 (in Russian).
  8. E. G. Poznyak and E. V. Shikin, Differential Geometry, Moscow Univ. Press, Moscow, 1990 (in Russian).
  9. A. A. Samarskĭ, Theory of Difference Schemes, Nauka, Moscow, 1977 (in Russian).
  10. R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154 (1979), 343-357.
  11. A. S. Smogorzhevskiĭ, Geometric Constructions on the Lobachevsky Plane, Gostekhteorizdat, Moscow, 1951 (in Russian).
  12. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in Soliton Theory, Nauka, Moscow, 1986 (in Russian).
  13. S. A. Zadadaev, Λ2-representations of equations of mathematical physics and formulation of the spectral-evolutionary problem, Vestnik Moskov. Univ. Fiz. Astronom. 1998, no. 5, 29-32 (in Russian).
  14. V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation is a completely integrable Hamiltonian system, Funktsional. Anal. i Prilozhen. 5 (1971), no. 4, 18-127 (in Russian).
Pages:
261-274
Main language of publication
English
Received
1999-07-20
Accepted
2000-10-26
Published
2000
Exact and natural sciences