ArticleOriginal scientific text
Title
On extendability of invariant distributions
Authors
Abstract
In this paper sufficient conditions are given in order that every distribution invariant under a Lie group extend from the set of orbits of maximal dimension to the whole of the space. It is shown that these conditions are satisfied for the n-point action of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary signature.
Keywords
Hausdorff partition, foliation, invariant distribution
Bibliography
- O. V. Besov et al., Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian).
- G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
- A. Cerezo, Equations with constant coefficients invariant under a group of linear transformations, Trans. Amer. Math. Soc. 204 (1975), 267-298.
- V. Edén, Disributions invariant under the group of complex orthogonal transformations, Math. Scand. 14 (1964), 75-89.
- C. Herz, Invariant distributions, in: Proc. Sympos. Pure Math. 35, Part 2, Amer. Math. Soc., 1979, 361-373.
- P. Jeanquartier, Distributions et opérateurs différentiels homogènes et inva- riants, Comment. Math. Helv. 39 (1965), 205-252.
- S. Łojasiewicz, Ensembles semi-analytiques, IHES, 1965.
- B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966.
- P.-D. Methée, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269.
- R. Narasimhan, Analysis on Real and Complex Manifolds, Masson, Paris, 1968.
- A. I. Oksak, On invariant and covariant Schwartz distributions in the case of a compact linear group, Comm. Math. Phys. 46 (1976), 269-287.
- G. de Rham, Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv. 28 (1954), 346-352.
- L. Schwartz, Séminaire 1954/55, Exposé n°7.
- G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68.
- A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.
- H. Weyl, The Classical Groups, Princeton Univ. Press, 1946.
- B. Ziemian, On G-invariant distributions, J. Differential Equations 35 (1980), 66-86.
- B. Ziemian, Distributions invariant under compact Lie groups, Ann. Polon. Math. 42 (1983), 175-183.
- Yu. M. Zinoviev, On Lorentz invariant distributions, Comm. Math. Phys. 47 (1976), 33-42.