ArticleOriginal scientific text

Title

On implicit Lagrangian differential systems

Authors 1

Affiliations

  1. Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland

Abstract

Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).

Keywords

implicit differential equation, symplectic manifold, integrability, Lagrangian manifold

Bibliography

  1. V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985.
  2. J. W. Bruce, A note on first order differential equations of degree greater than one and wavefront evolution, Bull. London Math. Soc. 16 (1984), 139-144.
  3. I. Ekeland, Discontinuités de champs hamiltoniens et existence de solutions optimales en calcul des variations, Publ. Math. I.H.E.S. 47 (1977), 5-32.
  4. S. Janeczko, Systems of rays in the presence of distribution of hyperplanes, in: Banach Center Publ. 32, Inst. Math., Polish Acad. Sci., 1995, 245-260.
  5. S. Janeczko, Hamiltonian geodesics in nonholonomic differential systems, Reports Math. Phys. 40 (1997), 217-224.
  6. S. Janeczko, On isotropic submanifolds and evolution of quasicaustics, Pacific J. Math. 158 (1993), 317-334.
  7. J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories, Lecture Notes in Physics 107, Springer, 1979.
  8. J. Martinet, Singularities of Smooth Functions and Maps, Cambridge Univ. Press, Cambridge, 1982.
  9. J. N. Mather, Solutions of generic linear equations, in: Dynamical Systems (Salvador, 1971), Academic Press, 1973, 185-193.
  10. R. Montgomery, A survey of singular curves in sub-Riemannian geometry, J. Dynam. Control Systems 1 (1995), 49-90.
  11. J. Śniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J. 22 (1972), 267-275.
  12. F. Takens, Implicit differential equations: some open problems, in: Lecture Notes in Math. 535, Springer, 1976, 237-253.
  13. R. Thom, Sur les équations différentielles multiformes et leurs intégrales singulières, Bol. Soc. Brasil. Mat. 3 (1972), 1-11.
  14. A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, RI, 1977.
Pages:
133-141
Main language of publication
English
Received
1999-07-20
Accepted
2000-01-03
Published
2000
Exact and natural sciences