ArticleOriginal scientific text
Title
On implicit Lagrangian differential systems
Authors 1
Affiliations
- Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Abstract
Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).
Keywords
implicit differential equation, symplectic manifold, integrability, Lagrangian manifold
Bibliography
- V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Birkhäuser, Boston, 1985.
- J. W. Bruce, A note on first order differential equations of degree greater than one and wavefront evolution, Bull. London Math. Soc. 16 (1984), 139-144.
- I. Ekeland, Discontinuités de champs hamiltoniens et existence de solutions optimales en calcul des variations, Publ. Math. I.H.E.S. 47 (1977), 5-32.
- S. Janeczko, Systems of rays in the presence of distribution of hyperplanes, in: Banach Center Publ. 32, Inst. Math., Polish Acad. Sci., 1995, 245-260.
- S. Janeczko, Hamiltonian geodesics in nonholonomic differential systems, Reports Math. Phys. 40 (1997), 217-224.
- S. Janeczko, On isotropic submanifolds and evolution of quasicaustics, Pacific J. Math. 158 (1993), 317-334.
- J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories, Lecture Notes in Physics 107, Springer, 1979.
- J. Martinet, Singularities of Smooth Functions and Maps, Cambridge Univ. Press, Cambridge, 1982.
- J. N. Mather, Solutions of generic linear equations, in: Dynamical Systems (Salvador, 1971), Academic Press, 1973, 185-193.
- R. Montgomery, A survey of singular curves in sub-Riemannian geometry, J. Dynam. Control Systems 1 (1995), 49-90.
- J. Śniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J. 22 (1972), 267-275.
- F. Takens, Implicit differential equations: some open problems, in: Lecture Notes in Math. 535, Springer, 1976, 237-253.
- R. Thom, Sur les équations différentielles multiformes et leurs intégrales singulières, Bol. Soc. Brasil. Mat. 3 (1972), 1-11.
- A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, RI, 1977.