ArticleOriginal scientific text
Title
Continuation of holomorphic solutions to convolution equations in complex domains
Authors 1, 2, 1
Affiliations
- Department of Mathematics and Informatics, Faculty of Sciences, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Institute of Natural Sciences, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Abstract
For an analytic functional on , we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in . We determine the directions in which every solution can be continued analytically, by using the characteristic set.
Keywords
convolution equation, analytic continuation, characteristic set
Bibliography
- [A] T. Aoki, Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math. 72 (1988), 261-283.
- [I1] R. Ishimura, A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ. 46 (1992), 195-199.
- [I2] R. Ishimura, The characteristic set for differential-difference equations in real domains, Kyushu J. Math. 53 (1999), 107-114.
- [I-O1] R. Ishimura and Y. Okada, The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Bull. Soc. Math. France 122 (1994), 413-433.
- [I-O2] R. Ishimura and Y. Okada, The micro-support of the complex defined by a convolution operator in tube domains, in: Singularities and Differential Equations, Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 105-114.
- [I-O3] R. Ishimura and Y. Okada, Examples of convolution operators with described characteristics, in preparation.
- [I-Oj] R. Ishimura and Y. Okada, Sur la condition (S) de Kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math. 48 (1994), 257-263.
- [Ka] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 467-517.
- [Ki] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329-356.
- [Ko] Yu. F. Korobeĭnik, Convolution equations in the complex domain, Math. USSR-Sb. 36 (1985), 171-193.
- [Kr] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of
, Math. USSR-Izv. 36 (1991), 497-517. - [Ll-G] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. Wiss. 282, Springer, Berlin, 1986.
- [Lv] B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monographs, Amer. Math. Soc., Providence, 1964.
- [R] L. I. Ronkin, Functions of Completely Regular Growth, Kluwer, 1992.
- [Sé] A. Sébbar, Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, in: Séminaire Lelong-Skoda, Lecture Notes in Math. 822, Springer, Berlin, 1980, 199-220.
- [V] A. Vidras, Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland.
- [Z] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646-1648.