ArticleOriginal scientific text

Title

Continuation of holomorphic solutions to convolution equations in complex domains

Authors 1, 2, 1

Affiliations

  1. Department of Mathematics and Informatics, Faculty of Sciences, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
  2. Institute of Natural Sciences, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Abstract

For an analytic functional S on n, we study the homogeneous convolution equation S * f = 0 with the holomorphic function f defined on an open set in n. We determine the directions in which every solution can be continued analytically, by using the characteristic set.

Keywords

convolution equation, analytic continuation, characteristic set

Bibliography

  1. [A] T. Aoki, Existence and continuation of holomorphic solutions of differential equations of infinite order, Adv. in Math. 72 (1988), 261-283.
  2. [I1] R. Ishimura, A remark on the characteristic set for convolution equations, Mem. Fac. Sci. Kyushu Univ. 46 (1992), 195-199.
  3. [I2] R. Ishimura, The characteristic set for differential-difference equations in real domains, Kyushu J. Math. 53 (1999), 107-114.
  4. [I-O1] R. Ishimura and Y. Okada, The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Bull. Soc. Math. France 122 (1994), 413-433.
  5. [I-O2] R. Ishimura and Y. Okada, The micro-support of the complex defined by a convolution operator in tube domains, in: Singularities and Differential Equations, Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 105-114.
  6. [I-O3] R. Ishimura and Y. Okada, Examples of convolution operators with described characteristics, in preparation.
  7. [I-Oj] R. Ishimura and Y. Okada, Sur la condition (S) de Kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math. 48 (1994), 257-263.
  8. [Ka] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 467-517.
  9. [Ki] C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France 97 (1969), 329-356.
  10. [Ko] Yu. F. Korobeĭnik, Convolution equations in the complex domain, Math. USSR-Sb. 36 (1985), 171-193.
  11. [Kr] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of n, Math. USSR-Izv. 36 (1991), 497-517.
  12. [Ll-G] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. Wiss. 282, Springer, Berlin, 1986.
  13. [Lv] B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monographs, Amer. Math. Soc., Providence, 1964.
  14. [R] L. I. Ronkin, Functions of Completely Regular Growth, Kluwer, 1992.
  15. [Sé] A. Sébbar, Prolongement des solutions holomorphes de certains opérateurs différentiels d'ordre infini à coefficients constants, in: Séminaire Lelong-Skoda, Lecture Notes in Math. 822, Springer, Berlin, 1980, 199-220.
  16. [V] A. Vidras, Interpolation and division problems in spaces of entire functions with growth conditions and their applications, Doct. Diss., Univ. of Maryland.
  17. [Z] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646-1648.
Pages:
105-115
Main language of publication
English
Received
1998-12-08
Accepted
1999-07-28
Published
2000
Exact and natural sciences