ArticleOriginal scientific text
Title
Two-dimensional examples of rank-one convex functions that are not quasiconvex
Authors 1, 2
Affiliations
- Université des Sciences et, Technologies de Lille, Avenue Paul Langevin, 59655 Villeneuve d'Ascq, France
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warszawa, Poland
Abstract
The aim of this note is to provide two-dimensional examples of rank-one convex functions which are not quasiconvex.
Keywords
rank-one convex function, quasiconvexity
Bibliography
- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145.
- J. M. Ball and F. Murat,
-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984), 225-253. - P. G. Ciarlet, Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988.
- B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989.
- B. Dacorogna and J. P. Haeberly, Remarks on a numerical study of convexity, quasiconvexity, and rank-one convexity, in: Progr. Nonlinear Differential Equations Appl. 25, Birkhäuser, Basel, 1996, 143-154.
- C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
- P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel, 1997.
- V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 185-189.