PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 73 | 3 | 275-290
Tytuł artykułu

The BV-algebra of a Jacobi manifold

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that the Gerstenhaber algebra of the 1-jet Lie algebroid of a Jacobi manifold has a canonical exact generator, and discuss duality between its homology and the Lie algebroid cohomology. We also give new examples of Lie bialgebroids over Poisson manifolds.
Rocznik
Tom
73
Numer
3
Strony
275-290
Opis fizyczny
Daty
wydano
2000
otrzymano
1999-12-13
poprawiono
2000-04-04
Twórcy
autor
  • Department of Mathematics, University of Haifa, Haifa, Israel
Bibliografia
  • [1] D. Chinea, M. de León and J. C. Marrero, The canonical double complex for Jacobi manifolds, C. R. Acad. Sci. Paris Sér. I 323 (1996), 637-642.
  • [2] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, New York, 1993.
  • [3] S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for the Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), 417-436.
  • [4] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), 265-285.
  • [5] F. Guédira et A. Lichnerowicz, Géométrie des algèbres de Lie de Kirillov, J. Math. Pures Appl. 63 (1984), 407-484.
  • [6] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vil- kovisky algebras, Ann. Inst. Fourier (Grenoble) 48 (1998), 425-440.
  • [7] Y. Kerbrat et Z. Souici-Benhammadi, Variétés de Jacobi et groupoï des de contact, C. R. Acad. Sci. Paris Sér. I 317 (1993), 81-86.
  • [8] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165.
  • [9] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: É. Cartan et les mathématiques d'aujourd'hui, Astérisque, hors série, 1985, 257-271.
  • [10] M. de León, J. C. Marrero and E. Padrón, On the geometric quantization of Jacobi manifolds, J. Math. Phys. 38 (1997), 6185-6213.
  • [11] M. de León, J. C. Marrero and E. Padrón, Cohomologí a y Homologí a Canónica de Lichnerowicz-Jacobi, preprint, 1998.
  • [12] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mecha- nics, D. Reidel, Dordrecht, 1987.
  • [13] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. 57 (1978), 453-488.
  • [14] A. Lichnerowicz, La géométrie des transformations canoniques, Bull. Soc. Math. Belg. Sér. A 31 (1979), 105-135.
  • [15] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987.
  • [16] K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452.
  • [17] I. Vaisman, Remarks on the use of the stable tangent bundle in differential geometry and in the unified field theory, Ann. Inst. H. Poincaré Phys. Théor. 28 (1978), 317-333.
  • [18] I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. Math. Sci. 8 (1985), 521-536.
  • [19] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progr. Math. 118, Birkhäuser, Basel, 1994.
  • [20] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394.
  • [21] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv73z3p275bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.