ArticleOriginal scientific text
Title
Weak solutions of equations of complex Monge-Ampère type
Authors 1
Affiliations
- Technical University of Łódź, Branch in Bielsko-Biała, Willowa 2, 43-300 Bielsko-Biała, Poland
Abstract
We prove some existence results for equations of complex Monge-Ampère type in strictly pseudoconvex domains and on Kähler manifolds.
Keywords
plurisubharmonic function, complex Monge-Ampère operator
Bibliography
- [A1] T. Aubin, Equations du type Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris 283 (1976), 119-121.
- [A2] T. Aubin, Equations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. 102 (1978), 63-95.
- [A3] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren Math. Wiss. 244, Springer, 1982.
- [BT1] E. Bedford and B. A. Taylor, The Dirichlet problem for the complex Monge-Ampère operator, Invent. Math. 37 (1976), 1-44.
- [BT2] E. Bedford and B. A. Taylor, The Dirichlet problem for an equation of complex Monge-Ampère type, in: Partial Differential Equations and Geometry, C. Byrnes (ed.), Dekker, 1979, 39-50.
- [BT3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- [BT4] E. Bedford and B. A. Taylor, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38 (1989), 455-469.
- L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), 209-252.
- [Ce] U. Cegrell, On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185 (1984), 247-251.
- [K1] S. Kołodziej, The range of the complex Monge-Ampère operator II, Indiana Univ. Math. J. 44 (1995), 765-782.
- [K2] S. Kołodziej, Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator, Ann. Polon. Math. 65 (1996), 11-21.
- [K3] S. Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117.
- [S] Y.-T. Siu, Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, Birkhäuser, 1987.
- [Y] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978), 339-411.