ArticleOriginal scientific text

Title

Continuous solutions of a polynomial-like iterative equation with variable coefficients

Authors 1, 2

Affiliations

  1. Department of Mathematics Sichuan Union University Chengdu 610064 P.R. China
  2. Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada N2L 3G1

Abstract

Using the fixed point theorems of Banach and Schauder we discuss the existence, uniqueness and stability of continuous solutions of a polynomial-like iterative equation with variable coefficients.

Keywords

functional equation, fixed point theorem, iterative root

Bibliography

  1. N. H. Abel, Oeuvres complètes, Vol. II, Christiania, 1981, 36-39.
  2. J. G. Dhombres, Itération linéaire d'ordre deux, Publ. Math. Debrecen 24 (1977), 277-287.
  3. J. M. Dubbey, The Mathematical Work of Charles Babbage, Cambridge Univ. Press, 1978.
  4. M. Kuczma, Functional Equations in a Single Variable, Monograf. Mat. 46, PWN, Warszawa, 1968.
  5. M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, 1990.
  6. A. Mukherjea and J. S. Ratti, On a functional equation involving iterates of a bijection on the unit interval, Nonlinear Anal. 7, (1983), 899-908.
  7. S. Nabeya, On the function equation f(p + qx + rf(x)) = a + bx + cf(x), Aequationes Math. 11 (1974), 199-211.
  8. J. Z. Zhang and L. Yang, Discussion on iterative roots of continuous and piecewise monotone functions, Acta Math. Sinica 26 (1983), 398-412 (in Chinese).
  9. W. N. Zhang, Discussion on the iterated equation n_{i=1}λifi(x)=F(x), Chinese Sci. Bull. 32 (1987), 1444-1451.
  10. W. N. Zhang, Stability of the solution of the iterated equation n_{i=1}λifi(x)=F(x), Acta Math. Sci. 8 (1988), 421-424.
  11. W. N. Zhang, Discussion on the differentiable solutions of the iterated equation n_{i=1}λifi(x)=F(x), Nonlinear Anal. 15 (1990), 387-398.
Pages:
29-36
Main language of publication
English
Received
1998-08-18
Published
2000
Exact and natural sciences