ArticleOriginal scientific text

Title

Applications of the Carathéodory theorem to PDEs

Authors , 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We discuss and exploit the Carathéodory theorem on existence and uniqueness of an absolutely continuous solution x: ℐ (⊂ ℝ) → X of a general ODE {()over=}(t,x) for the right-hand side ℱ : dom ℱ ( ⊂ ℝ × X) → X taking values in an arbitrary Banach space X, and a related result concerning an extension of x. We propose a definition of solvability of (*) admitting all connected ℐ and unifying the cases "dom ℱ is open" and "dom ℱ = ℐ × Ω for some Ω ⊂ X". We show how to use the theorems mentioned above to get approximate solutions of a nonlinear parabolic PDE and exact solutions of a linear evolution PDE with distribution data.

Keywords

Carathéodory theorem, product integral, Galerkin method

Bibliography

  1. G. Aguaro, Sul teorema di esistenza di Carathéodory per i sistemi di equazioni differenziali ordinarie, Boll. Un. Mat. Ital. 8 (1955), 208-212.
  2. P. S. Bondarenko, A remark on Carathéodory's existence and uniqueness conditions, Visnik Kiiv. Univ. Ser. Mat. Meh. 14 (1972), 39-42 (in Ukrainian).
  3. C. Carathéodory, Vorlesungen über reelle Funktionen, Teubner, Leipzig, 1927.
  4. J. D. Dollard and C. N. Friedman, Product Integrals, Encyclopedia Math. Appl. 10, Addison-Wesley, London, 1979.
  5. W. N. Everitt and D. Race, On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations, Quaestiones Math. 2 (1977/78), 507-512.
  6. P. Hartman, Ordinary Differential Equations, Wiley, 1964, p. 23.
  7. K. Holly, Approach to an integral kernel of the evolution N-S equations in n through integration of distribution-valued curves, in preparation.
  8. K. Holly and M. Danielewski, Interdiffusion in solids, free boundary problem for r-component (r ≥ 2) one dimensional mixture showing constant concentration, Phys. Rev. B 50 (1994), 13336-13346.
  9. K. Holly and M. Wiciak, Compactness method applied to an abstract nonlinear parabolic equation, in: Selected Problems of Mathematics, Anniversary Issue, Vol. 6, Cracow Univ. of Techn., Cracow, 1995, 95-160.
  10. J. Liouville, Sur le développement des fonctions ou parties de fonctions en séries, etc, Second Mémoire, J. de Math. 2 (1837), 16-35.
  11. S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, 1988.
  12. J. Mateja, personal communication.
  13. Z. Opial, Sur l'équation différentielle ordinaire du premier ordre dont le second membre satisfait aux conditions de Carathéodory, Ann. Polon. Math. 8 (1960), 23-28.
  14. A. Pelczar and J. Szarski, Introduction to the Theory of Differential Equations, PWN, Warszawa, 1987 (in Polish).
  15. E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl. 6 (1890), 145-210.
  16. R. Rabczuk, Elements of Differential Inequalities, PWN, Warszawa, 1976 (in Polish).
  17. S. Saks, Theory of the Integral, 2nd ed., Stechert, New York, 1937.
  18. G. Sansone, Equazioni differenziali nel campo reale, Parte seconda, Zanichelli, Bologna, 1949.
  19. K. Yosida, Functional Analysis, 6th ed., Springer, 1980, Chap. V, Sec. 5, 135-136.
Pages:
1-27
Main language of publication
English
Received
1997-07-08
Accepted
1998-01-10
Published
2000
Exact and natural sciences