ArticleOriginal scientific text

Title

On the multivariate transfinite diameter

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Toronto, M5S 3G3, Toronto, Ontario, Canada
  2. Laboratoire de Mathématiques E. Picard, UFR MIG, Université Paul Sabatier, 31062 Toulouse Cedex, France

Abstract

We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.

Keywords

Robin's functions, extremal plurisubharmonic functions, minimal polynomials, multivariate transfinite diameter, Chebyshev polynomials

Bibliography

  1. [Ba] M. Baran, Conjugate norms in n and related geometrical problems, Dissertationes Math. 378 (1998).
  2. [BT] E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 133-171.
  3. [BT2] E. Bedford and B. A. Taylor, Fine topology, Šilov boundary, and (ddc)n, J. Funct. Anal. 72 (1987), 225-251.
  4. [Blo] Z. Błocki, The equilibrium measure for product subsets of n, preprint, 1999.
  5. [Bl] T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), 1-21.
  6. [BBCL] T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in ℂ and n, Rocky Mountain J. Math. 22 (1992), 441-470.
  7. [BC] T. Bloom and J.-P. Calvi, On multivariate minimal polynomials, preprint, 1999.
  8. [Bo] L. Bos, A characteristic of points in 2 having a Lebesgue function of exponential growth, J. Approx. Theory 56 (1989), 316-329.
  9. [Go] G. M. Goluzin, Geometric Theory of a Function of a Complex Variable, Amer. Math. Soc., Providence, 1969.
  10. [Je] M. Jędrzejowski, The homogeneous transfinite diameter of a compact subset of n, Ann. Polon. Math. 55 (1991), 191-205.
  11. [Kl] M. Klimek, Pluripotential Theory, Oxford Univ. Press, Oxford, 1991.
  12. [Kl2] M. Klimek, Metrics associated with extremal plurisubharmonic functions, Proc. Amer. Math. Soc. 125 (1995), 2763-2770.
  13. [Le] N. Levenberg, Capacities in Several Complex Variables, thesis, University of Michigan, 1984.
  14. [LT] N. Levenberg and B. A. Taylor, Comparison of capacities in n, in: Lectures Notes in Math. 1094, Springer, 1984, 162-172.
  15. [NZ] T. V. Nguyen et A. Zeriahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. (2) 107 (1983), 81-91.
  16. [Ra] T. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995.
  17. [SS] M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, in: Studies in Math. Analysis and Related Topics, Stanford Univ. Press, 1962, 341-358.
  18. [Sh] V. P. Sheĭnov, Invariant form of Pólya's inequalities, Siberian Math. J. 14 (1973), 138-145.
  19. [Si1] J. Siciak, Extremal plurisubharmonic functions on N, Ann. Polon. Math. 39 (1981), 175-211.
  20. [Si2] J. Siciak, A remark on Tchebysheff polynomials in n, Univ. Iagell. Acta Math. 35 (1997), 37-45.
  21. [Za] V. P. Zaharjuta [V. P. Zakharyuta], Transfinite diameter, Chebyshev constants, and capacity for compacta in n, Math. USSR-Sb. 25 (1975), 350-364.
Pages:
285-305
Main language of publication
English
Received
1999-06-25
Accepted
1999-10-11
Published
1999
Exact and natural sciences