Faculty of Applied Mathematicsi, Academy of Mining and Metallurgy, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
[1] B. D. Bojanov, H. A. Hakopian, and A. A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer, 1993.
[2] C. de Boor and R. De Vore, Approximation by smooth multivariate splines, Trans. Amer Math. Soc. 276 (1983), 775-788.
[3] C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Anal. Math. 42 (1982/83), 99-115.
[4] C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, Springer, 1993.
[5] C. de Boor, R. De Vore, and A. Ron, On the construction of multivariate (pre)wavelets, Constr. Approx. 9(1993), 123-166.
[6] K. Dziedziul, Box Splines, Wyd. P.G., Gdańsk, 1997 (in Polish).
[7] G. Fix and G. Strang, A Fourier analysis of the finite element variational method, in: Constructive Aspects of Functional Analysis, G. Geymonat (ed.), Cremonese, Rome, 1973, 793-840.
[8] K. Jetter, Multivariate approximation from the cardinal interpolation point of view, in: Approximation Theory VII (Austin, TX, 1992), E. W. Cheney, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, 1993, 131-161.
[9] S. Karlin and W. J. Studden, Tchebysheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966.
[10] J. K. Kowalski, Application of box splines to the approximation of Sobolev spaces, J. Approx. Theory 61 (1990), 55-73.
[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.
[12] Z. Wronicz, Chebyshevian splines, Dissertationes Math. 305 (1990).
[13] Z. Wronicz, On some generalization of box splines, Preprint 34 (January 97), Instytut Matematyki AGH.
[14] Z. Wronicz, On some properties of box splines, Preprint 25 (January 98), Wydział Matematyki Stosowanej AGH.