ArticleOriginal scientific text

Title

Abstract separation theorems of Rodé type and their applications

Authors 1, 2, 1

Affiliations

  1. Department of Mathematics, Technical University of Łódź, Branch in Bielsko-Biała, Willowa 2, 43-309 Bielsko-Biała, Poland
  2. Institute of Mathematics, L. Kossuth University, H-4010 Debrecen, Pf. 12, Hungary

Abstract

Sufficient and necessary conditions are presented under which two given functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π-concave). As special cases several old and new separation theorems are obtained.

Keywords

convex (midconvex), affine (Jensen) function, Rodé's theorem, separation theorem, subadditive, additive, sublinear, linear function

Bibliography

  1. K. Baron, J. Matkowski and K. Nikodem, A sandwich with convexity, Math. Pannonica 5 (1994), 139-144.
  2. E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48.
  3. B G. Buskes, The Hahn-Banach Theorem surveyed, Dissert. Math. 327 (1993).
  4. B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland Math. Stud. 56, North-Holland, Amsterdam, 1981.
  5. N. Hirano, H. Komiya and W. Takahashi, A generalization of the Hahn-Banach theorem, J. Math. Anal. Appl. 88 (1982), 333-340.
  6. K R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269-272.
  7. H. König, On the abstract Hahn-Banach Theorem due to Rodé, Aequationes Math. 34 (1987), 89-95.
  8. P. Kranz, Additive functionals on abelian semigroups, Comment. Math. Prace Mat. 16 (1972), 239-246.
  9. S. Mazur et W. Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13 (1953), 137-179.
  10. K. Nikodem, E. Sadowska and S. Wąsowicz, A note on separation by subadditive and sublinear functions, Ann. Mat. Sil., to appear.
  11. K. Nikodem and S. Wąsowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160-164.
  12. Z. Páles, Geometric versions of Rodé's theorem, Rad. Mat. 8 (1992), 217-229.
  13. R G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474-481.
  14. P. Volkmann and H. Weigel, Systeme von Funktionalgleichungen, ibid. 37 (1981), 443-449.
Pages:
207-217
Main language of publication
English
Received
1997-12-03
Accepted
1999-07-20
Published
1999
Exact and natural sciences