ArticleOriginal scientific text
Title
Abstract separation theorems of Rodé type and their applications
Authors 1, 2, 1
Affiliations
- Department of Mathematics, Technical University of Łódź, Branch in Bielsko-Biała, Willowa 2, 43-309 Bielsko-Biała, Poland
- Institute of Mathematics, L. Kossuth University, H-4010 Debrecen, Pf. 12, Hungary
Abstract
Sufficient and necessary conditions are presented under which two given functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π-concave). As special cases several old and new separation theorems are obtained.
Keywords
convex (midconvex), affine (Jensen) function, Rodé's theorem, separation theorem, subadditive, additive, sublinear, linear function
Bibliography
- K. Baron, J. Matkowski and K. Nikodem, A sandwich with convexity, Math. Pannonica 5 (1994), 139-144.
- E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48.
- B G. Buskes, The Hahn-Banach Theorem surveyed, Dissert. Math. 327 (1993).
- B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland Math. Stud. 56, North-Holland, Amsterdam, 1981.
- N. Hirano, H. Komiya and W. Takahashi, A generalization of the Hahn-Banach theorem, J. Math. Anal. Appl. 88 (1982), 333-340.
- K R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269-272.
- H. König, On the abstract Hahn-Banach Theorem due to Rodé, Aequationes Math. 34 (1987), 89-95.
- P. Kranz, Additive functionals on abelian semigroups, Comment. Math. Prace Mat. 16 (1972), 239-246.
- S. Mazur et W. Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13 (1953), 137-179.
- K. Nikodem, E. Sadowska and S. Wąsowicz, A note on separation by subadditive and sublinear functions, Ann. Mat. Sil., to appear.
- K. Nikodem and S. Wąsowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160-164.
- Z. Páles, Geometric versions of Rodé's theorem, Rad. Mat. 8 (1992), 217-229.
- R G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474-481.
- P. Volkmann and H. Weigel, Systeme von Funktionalgleichungen, ibid. 37 (1981), 443-449.