ArticleOriginal scientific text

Title

An approach to joint spectra

Authors 1, 2

Affiliations

  1. Universidad Autónoma Metropolitana - Azcapotzalco, Departamento de Ciencias Básicas, Av. San Pablo 180, col. Reynosa Tamaulipas, 02 200 México, D.F., México
  2. Universidad Autónoma Metropolitana - Iztapalapa, Av. Michoacán y la Purísima s/n, col. Vicentina AP 55-538, 09 340 México, D.F., México

Abstract

For a given unital Banach algebra A we describe joint spectra which satisfy the one-way spectral mapping property. Each spectrum of this class is uniquely determined by a family of linear subspaces of A called spectral subspaces. We introduce a topology in the space of all spectral subspaces of A and utilize it to the study of the properties of the spectra.

Keywords

spectral subspace, joint spectrum, Banach algebra

Bibliography

  1. C.-K. Fong and A. Sołtysiak, Existence of a multiplicative functional and joint spectra, Studia Math. 81 (1985), 213-220.
  2. R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.
  3. V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128.
  4. V. Müller, Spectral systems, unpublished notes, 1997.
  5. A. Sołtysiak, Approximate point joint spectrum and multiplicative functionals, Studia Math. 86 (1987), 227-286.
  6. A. Sołtysiak, Joint spectra and multiplicative functionals, Colloq. Math. 56 (1989), 357-366.
  7. A. Sołtysiak, Joint Spectra and Multiplicative Linear Functionals in Non-commutative Banach Algebras, Wyd. Nauk. Uniw. im. A. Mickiewicza, Poznań, 1988.
  8. W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261.
Pages:
131-144
Main language of publication
English
Received
1998-07-13
Accepted
1998-12-17
Published
1999
Exact and natural sciences