ArticleOriginal scientific text

Title

Étude des différences de corps convexes plans

Authors 1

Affiliations

  1. 1, rue Auguste Perret, F-92500 Rueil-Malmaison, France

Abstract

We characterize the linear space ℋ of differences of support functions of convex bodies of ² and we consider every h ∈ ℋ as the support function of a generalized hedgehog (a rectifiable closed curve having exactly one oriented support line in each direction). The mixed area (for plane convex bodies identified with their support functions) has a symmetric bilinear extension to ℋ which can be interpreted as a mixed area for generalized hedgehogs. We study generalized hedgehogs and we extend the Minkowski inequality.

Keywords

Brunn-Minkowski theory, hedgehog, convex curve, support function

Bibliography

  1. H. Geppert, Über den Brunn-Minkowskischen Satz, Math. Z. 42 (1937), 238-254.
  2. M. Kallay, Reconstruction of a plane convex body from the curvature of its boundary, Israel J. Math. 17 (1974), 149-161.
  3. R. Langevin, G. Levitt et H. Rosenberg, Hérissons et multihérissons, dans : Singularities, Banach Center Publ. 20, PWN, Warszawa, 1988, 245-253.
  4. Y. Martinez-Maure, De nouvelles inégalités géométriques pour les hérissons, Arch. Math. (Basel) 72 (1999), 444-453.
  5. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
Pages:
71-78
Main language of publication
French
Received
1998-10-21
Accepted
1999-05-31
Published
1999
Exact and natural sciences