ArticleOriginal scientific text

Title

Hypersurfaces with parallel affine curvature tensor R*

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
  2. Dept. Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B B, 3030 Leuven, Belgium

Abstract

In [OV] we introduced an affine curvature tensor R*. Using it we characterized some types of hypersurfaces in the affine space n+1. In this paper we study hypersurfaces for which R* is parallel relative to the induced connection.

Keywords

curvature tensor, induced connection, affine normal

Bibliography

  1. [D]₁ R. Deszcz, Pseudosymmetry curvature conditions imposed on the shape operators of hypersurfaces in the affine space, Results Math. 20 (1991), 600-621.
  2. [D]₂ R. Deszcz, Certain curvature characterizations of affine hypersurfaces, Colloq. Math. 63 (1992), 21-39.
  3. [NS] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, 1994.
  4. [O] B. Opozda, A class of projectively flat surfaces, Math. Z. 219 (1995), 77-92.
  5. [OS] B. Opozda and T. Sasaki, Surfaces whose images of affine normal are curves, Kyushu Math. J. 49 (1995), 1-10.
  6. [OV] B. Opozda and L. Verstraelen, On a new curvature tensor in affine differential geometry, in: Geometry and Topology of Submanifolds II, World Sci., 1990, 271-293.
  7. [VV] P. Verheyen and L. Verstraelen, Locally symmetric affine hypersurfaces, Proc. Amer. Math. Soc. 93 (1985), 101-105.
Pages:
25-32
Main language of publication
English
Received
1997-12-15
Accepted
1998-07-13
Published
1999
Exact and natural sciences