ArticleOriginal scientific text

Title

Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side

Authors 1, 2

Affiliations

  1. Dipartimento di Informatica, Matematica, Elettronica e Trasporti, Facoltà di Ingegneria, Università di Reggio Calabria, Via Graziella (Feo di Vito), 89100 Reggio Calabria, Italy
  2. Dipartimento di Matematica ed Applicazioni, Facoltà di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy

Abstract

Let F:[a,b]×n×n2n be a multifunction with possibly non-convex and unbounded values. The main result of this paper (Theorem 1) asserts that, given the multivalued boundary value problem (PF)    {u'' ∈ F(t,u,u'), u(a) = u(b) = ϑ_{ℝ^n}, if an appropriate restriction of the multifunction F has non-empty and closed values and satisfies the lower Scorza Dragoni property and a weak integrable boundedness type condition, then we can substitute the problem (PF) with another one (PG), with a suitable convex right-hand side G, such that every generalized solution of (PG) is also a generalized solution of (PF) (see also Remark 1 and Corollary 1). As a consequence of our results, in conjunction with those in [13] and [18], some existence theorems for multivalued boundary value problems are then presented (see Theorem 2, Corollary 2 and Theorem 3). Finally, some applications are given to the existence of generalized solutions for two implicit boundary value problems (Theorems 4-6).

Keywords

multivalued differential inclusions, boundary value problems, non-convex and unbounded right-hand side, directional continuous selections, implicit equations

Bibliography

  1. J. Appell, E. De Pascale, H. T. Nguyê n and P. P. Zabreĭko, Multi-valued superpositions, Dissertationes Math. 345 (1995).
  2. Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547.
  3. D. Averna, Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections, Boll. Un. Mat. Ital. (7) 8-A (1994), 193-202.
  4. G. Bonanno, Two theorems on the Scorza Dragoni property for multifunctions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 83 (1989), 51-56.
  5. G. Bonanno, Differential inclusions with nonconvex right hand side and applications to implicit integral and differential equations, Rend. Accad. Naz. Sci. (detta dei XL) 20 (1996), 193-203.
  6. A. Bressan, Upper and lower semicontinuous differential inclusions: A unified approach, in: Controllability and Optimal Control, H. Sussmann (ed.), Dekker, New York, 1989, 21-31.
  7. C. Castaing, A propos de l'existence des sections séparément mesurables et séparément continues d'une multiapplication séparément mesurable et séparément semi-continue inférieurement, Sém. Analyse Convexe, Montpellier 1976, Exp. no. 6.
  8. F. S. De Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusions, Topol. Methods Nonlinear Anal. 1 (1993), 303-313.
  9. K. Deimling, Multivalued Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl. 1, de Gruyter, Berlin, 1992.
  10. C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72.
  11. J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407-422.
  12. A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), 197-203.
  13. S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc. 45 (1992), 249-260.
  14. S. A. Marano, On a boundary value problem for the differential equation f(t,x,x',x'') = 0, J. Math. Anal. Appl. 182 (1994), 309-319.
  15. O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type Ψ(u)(t) ∈ F(t,Φ(u)(t)) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270.
  16. J. Oxtoby, Measure and Category, Springer, New York, 1971.
  17. B. Ricceri, Applications de théorèmes de semi-continuité inférieure, C. R. Acad. Sci. Paris Sér. I 295 (1982), 75-78.
  18. B. Ricceri, On multifunctions of one real variable, J. Math. Anal. Appl. 295 (1987), 225-236.
  19. B. Ricceri and A. Villani, Openness properties of continuous real functions on connected spaces, Rend. Mat. 2 (1982), 679-687.
Pages:
253-271
Main language of publication
English
Received
1998-02-04
Accepted
1998-06-08
Published
1999
Exact and natural sciences