ArticleOriginal scientific text

Title

Difference methods for the Darboux problem for functional partial differential equations

Authors 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

We consider the following Darboux problem: (1) Dxyz(x,y)=f(x,y,z(x,y),(Dxz)(x,y),(Dyz)(x,y)), (2) z(x,y) = ϕ(x,y) on [-a₀,a] × [-b₀,b] \ (0,a] × (0,b], where a,b,a,b>0.Theoperar[0,a] × [0,b] ∋ (x,y) ↦ ω_{(x,y)} ∈ C([-a₀,0] × [-b₀,0],ℝ)defedbyω_{(x,y)}(t,s) = ω(t+x,s+y)!$! represents the functional dependence on the unknown function and its derivatives. We construct a wide class of difference methods for problem (1),(2). We prove the existence of solutions of implicit functional systems by means of a comparative method. We get two convergence theorems for implicit and explicit schemes, in the latter case with a nonlinear estimate with respect to the third variable. We give numerical examples to illustrate these results.

Keywords

functional differential equation, Darboux problem, classical

Bibliography

  1. P. Brandi, Z. Kamont and A. Salvadori, Approximate solutions of mixed problems for first order partial differential-functional equations, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 277-302.
  2. T. Człapiński, Existence of solutions of the Darboux problem for partial differen- tial-functional equations with infinite delay in a Banach space, Comment. Math. 35 (1995), 111-122.
  3. Z. Denkowski and A. Pelczar, On the existence and uniqueness of solutions of some partial differential functional equations, Ann. Polon. Math. 35 (1978), 261-304.
  4. Z. Kamont, Finite difference approximations for first-order partial differential-functional equations, Ukrain. Math. J. 46 (1994), 265-287.
  5. Z. Kamont and M. Kwapisz, On the Cauchy problem for differential-delay equations in a Banach space, Math. Nachr. 74 (1976), 173-190.
  6. Z. Kamont and M. Kwapisz, On non-linear Volterra integral-functional equations in several variables, Ann. Polon. Math. 40 (1981), 1-29.
  7. Z. Kamont and H. Leszczyński, Stability of difference equations generated by parabolic differential-functional problems, Rend. Mat. 16 (1996), 265-287.
  8. Z. Kamont and H. Leszczyński, Numerical solutions to the Darboux problem with the functional dependence, Georgian Math. J. 5 (1998), 71-90.
  9. H. Leszczyński, Convergence of one-step difference methods for nonlinear para- bolic differential-functional systems with initial-boundary conditions of the Dirichlet type, Comment. Math. 30 (1990), 357-375.
  10. H. Leszczyński, Convergence of difference analogues to the Darboux problem with functional dependence, Bull. Belgian Math. Soc. 5 (1998), 39-57.
  11. M. Malec, C. Mączka and W. Voigt, Weak difference-functional inequalities and their applications to the difference analogue of non-linear parabolic differential-functional equations, Beiträge Numer. Math. 11 (1983), 69-79.
  12. M. Malec and M. Rosati, Weak monotonicity for non linear systems of functional-finite difference inequalities of parabolic type, Rend. Mat. 3 (1983), 157-170.
  13. M. Malec et A. Schiaffino, Méthode aux différence finies pour une équation non-linéaire différentielle fonctionnelle du type parabolique avec une condition initiale de Cauchy, Boll. Un. Mat. Ital. 7B (1987), 99-109.
  14. A. Pelczar, Some functional-differential equations, Dissertationes Math. 100 (1973).
  15. T. Ważewski, Sur une extension du procédé de I. Jungermann pour établir la convergence des approximations successives au cas des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 43-46.
  16. M. Zennaro, Delay differential equations: theory and numerics, in: Theory and Numerics of Ordinary and Partial Differential Equations, Clarendon Press, Oxford, 1995, 291-333.
Pages:
171-193
Main language of publication
English
Received
1998-05-11
Published
1999
Exact and natural sciences