ArticleOriginal scientific text
Title
On the delay differential equation y'(x) = ay(τ(x)) + by(x)
Authors 1
Affiliations
- Department of Mathematics Technical University of Brno Technická 2 61669 Brno, Czech Republic
Abstract
The paper discusses the asymptotic properties of solutions of the scalar functional differential equation
.
Asymptotic formulas are given in terms of solutions of the appropriate scalar functional nondifferential equation.
Keywords
functional differential equation, functional (nondifferential) equation, asymptotic behaviour
Bibliography
- N. G. de Bruijn, The difference-differential equation
, I, II, Nederl. Akad. Wettensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 449-464. - J. Diblík, Asymptotic behaviour of solutions of linear differential equations with delay, Ann. Polon. Math. 58 (1993), 131-137.
- J. Diblík, Asymptotic representation of solutions of equation ẏ(t) = β(t)[y(t)-y(t-τ(t))], J. Math. Anal. Appl. 217 (1998), 200-215.
- I. Győri and M. Pituk, Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynam. Systems Appl. 5 (1996), 277-302.
- M. L. Heard, A change of variables for functional differential equations, J. Differential Equations 18 (1975), 1-10.
- T. Kato and J. B. McLeod, The functional differential equation y'(x) = ay(λx) + by(x), Bull. Amer. Math. Soc. 77 (1971), 891-937.
- M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl., Cambridge Univ. Press, 1990.
- F. Neuman, On transformations of differential equations and systems with deviating argument, Czechoslovak Math. J. 31 (1981), 87-90.
- M. Pituk, On the limits of solutions of functional differential equations, Math. Bohemica 118 (1993), 53-66.
Additional information
1991 Mathematics Subject Classification: Primary 34K15, 34K25; Secondary 39B05.