ArticleOriginal scientific text
Title
Homogeneous extremal function for a ball in ℝ²
Authors 1
Affiliations
- Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
Abstract
We point out relations between Siciak's homogeneous extremal function and the Cauchy-Poisson transform in case is a ball in ℝ². In particular, we find effective formulas for for an important class of balls. These formulas imply that, in general, is not a norm in ℂ².
Keywords
homogeneous extremal function, Cauchy-Poisson transform
Bibliography
- [B1] M. Baran, Siciak's extremal function of convex sets in
, Ann. Polon. Math. 48 (1988), 275-280. - [B2] M. Baran, Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in
, Michigan Math. J. 39 (1992), 395-404. - [B3] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in
, Proc. Amer. Math. Soc. 123 (1995), 485-494. - [B4] M. Baran, Bernstein type theorems for compact sets in
revisited, J. Approx. Theory 69 (1992), 156-166. - [CL] E. W. Cheney and W. A. Light, Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169, Springer, Berlin, 1985.
- [D] L. M. Drużkowski, Effective formula for the crossnorm in complexified unitary spaces, Univ. Iagel. Acta Math. 16 (1974), 47-53.
- [Kl] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
- [L] F. Leja, Teoria funkcji analitycznych [Theory of Analytic Functions], PWN, War- szawa, 1957 (in Polish).
- [Si1] J. Siciak, On an extremal function and domains of convergence of series of homogeneous polynomials, Ann. Polon. Math. 25 (1961), 297-307.
- [Si2] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
- [Si3] J. Siciak, Holomorphic continuation of harmonic functions, Ann. Polon. Math. 29 (1974), 67-73.
- [Si4] J. Siciak, Extremal plurisubharmonic functions in
, ibid. 39 (1981), 175-211. - [Si5] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in
, Sophia Kokyuroku in Math. 14, Sophia Univ., Tokyo, 1982. - [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.