ArticleOriginal scientific text

Title

Topology of families of affine plane curves

Authors 1, 2

Affiliations

  1. Institute of Mathematics, P.O. Box 631, Bo-Ho, Hanoi, Vietnam
  2. Department of Mathematics, Dalat University, Dalat, Vietnam

Abstract

We determine bifurcation sets of families of affine curves and study the topology of such families.

Keywords

affine curves, singularity, equisingularity, Milnor number

Bibliography

  1. Hà Huy Vui, Sur la fibration globale des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I 309 (1989), 231-234.
  2. Hà Huy Vui, La formule de Picard-Lefschetz affine, ibid. 321 (1995), 747-750.
  3. Hà Huy Vui et Lê D ung Tráng, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32.
  4. W. D. Neumann, Complex algebraic plane curves via their links at infinity, Invent. Math. 98 (1989), 445-489.
  5. F. Pham, Vanishing homologies and the n variables saddlepoint method, in: Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 310-333.
  6. M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257.
  7. R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 249-312.
Pages:
129-139
Main language of publication
English
Received
1997-11-17
Accepted
1998-05-11
Published
1999
Exact and natural sciences