ArticleOriginal scientific text

Title

Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group

Authors 1, 1

Affiliations

  1. Department of Mathematics, Pedagogical Institute 1 Hanoi, Tu Liem, Hanoi, Vietnam

Abstract

We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection π1:VΓ is finite and proper, then RV:O(Γ×G)ImRVO(V) has a right inverse

Keywords

complex Lie group, linear topological invariant, right inverse

Bibliography

  1. A. Aytuna, The Fréchet space structure of global sections of certain coherent analytic sheaves, Math. Balkan. (N.S.) 3 (1989), 311-324.
  2. P. B. Djakov and B. S. Mitiagin, The structure of polynomial ideals in the algebra of entire functions, Studia Math. 68 (1980), 85-104.
  3. G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976.
  4. H. Kazama and T. Umeno, ∂̅-cohomology of complex Lie groups, Publ. RIMS Kyoto Univ. 26 (1990), 473-484.
  5. J. Leiterer, Banach coherent sheaves, Math. Nachr. 85 (1978), 91-109.
  6. Y. Matsushima et A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137-155.
  7. S. Takeuchi, On completeness of holomorphic principal bundles, Nagoya Math. J. 57 (1974), 121-138.
  8. D. Vogt, Subspaces and quotient spaces of (s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 168-187.
  9. D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301.
  10. D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.
  11. D. Vogt, Über die Existenz von Ausdehnungsoperatoren für holomorphe Funktionen auf analytischen Mengen in n, preprint.
  12. V. P. Zaharyuta, Isomorphism of spaces of analytic functions, Dokl. Akad. Nauk SSSR 225 (1980), 11-14 (in Russian); English transl.: Soviet Math. Dokl. 22 (1980), 631-634.
Pages:
105
Main language of publication
English
Received
1997-01-06
Accepted
1997-12-03
Published
1999
Exact and natural sciences