Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 71 | 1 | 87-103

Tytuł artykułu

Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We characterise hyperconvexity in terms of Jensen measures with barycentre at a boundary point. We also give an explicit formula for the pluricomplex Green function in the Hartogs triangle. Finally, we study the behaviour of the pluricomplex Green function g(z,w) as the pole w tends to a boundary point.

Rocznik

Tom

71

Numer

1

Strony

87-103

Daty

wydano
1999
otrzymano
1998-05-11
poprawiono
1998-08-26

Twórcy

  • Mid Sweden University, S-831 25 Östersund, Sweden
  • Department of Mathematics, Umeå University, S-901 87 Umeå, Sweden
  • Department of Mathematics, Umeå University, S-901 87 Umeå, Sweden

Bibliografia

  • [1] A. Aytuna, On Stein manifolds M for which 𝓞(M) is isomorphic to $𝓞(Δ^n)$ as Fréchet spaces, Manuscripta Math. 62 (1988), 297-316.
  • [2] E. Bedford and J. E. Fornæss, A construction of peak functions on weakly pseudoconvex domains, Ann. of Math. 107 (1978), 555-568.
  • [3] Z. Błocki, The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 721-747.
  • [4] M. Carlehed, Comparison of the pluricomplex and the classical Green functions, Michigan Math. J. 45 (1998), 399-407.
  • [5] U. Cegrell, Capacities in Complex Analysis, Aspects Math. E14, Vieweg, 1988.
  • [6] D. Coman, Remarks on the pluricomplex Green function, preprint, 1996.
  • [7] K. Diederich and G. Herbort, Pseudoconvex domains of semiregular type, in: Contributions to Complex Analysis and Analytic Geometry, H. Skoda and J.-M. Trépreau (eds.), Aspects Math. E26, Vieweg, 1994, 127-161.
  • [8] A. Edigarian, On definitions of the pluricomplex Green function, Ann. Polon. Math. 67 (1997), 233-246.
  • [9] J. E. Fornæss and J. Wiegerinck, Approximation of plurisubharmonic functions, Ark. Mat. 27 (1989), 257-272.
  • [10] T. Gamelin, Uniform Algebras and Jensen Measures, London Math. Soc. Lecture Note Ser. 32, Cambridge Univ. Press, 1978.
  • [11] M. Hervé, Lindelöf's principle in infinite dimensions, in: Proc. on Infinite Dimensional Holomorphy (Berlin), T. L. Hayden and T. J. Suffridge (eds.), Lecture Notes in Math. 364, Springer, 1974, 41-57.
  • [12] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
  • [13] N. Kerzman et J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171-184.
  • [14] M. Klimek, Pluripotential Theory, London Math. Soc. Monographs (N.S.) 6, Oxford Univ. Press, 1991.
  • [15] S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., Wadsworth & Brooks/Cole, 1992.
  • [16] F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1-39.
  • [17] P. Lelong, Fonction de Green pluricomplexe et lemme de Schwarz dans les espaces de Banach, J. Math. Pures Appl. 68 (1989), 319-347.
  • [18] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
  • [19] L. Lempert, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications '81, Bulgar. Acad. Sci., Sophia, 1984, 341-364.
  • [20] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144.
  • [21] E. A. Poletsky and B. V. Shabat, Invariant metrics, in: Several Complex Variables III, G. M. Khenkin (ed.), Encyclopaedia Math. Sci., 9, Springer, 1989, 63-111.
  • [22] H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193-233.
  • [23] J. Yu, Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J. 43 (1994), 1271-1295.
  • [24] W. Zwonek, On Carathéodory completeness of pseudoconvex Reinhardt domains, preprint, 1998.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-apmv71z1p87bwm