Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 71 | 1 | 39-46

Tytuł artykułu

On bifurcation intervals for nonlinear eigenvalue problems

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We give a sufficient condition for [μ-M, μ+M] × {0} to be a bifurcation interval of the equation u = L(λu + F(u)), where L is a linear symmetric operator in a Hilbert space, μ ∈ r(L) is of odd multiplicity, and F is a nonlinear operator. This abstract result provides an elementary proof of the existence of bifurcation intervals for some eigenvalue problems with nondifferentiable nonlinearities. All the results obtained may be easily transferred to the case of bifurcation from infinity.

Rocznik

Tom

71

Numer

1

Strony

39-46

Daty

wydano
1999
otrzymano
1998-02-23
poprawiono
1998-10-14

Twórcy

  • Department of Applied Mathematics, University of Mining and Metallurgy, Mickiewicza 30, 30-059 Kraków, Poland

Bibliografia

  • [1] H. Berestycki, On some Sturm-Liouville problems, J. Differential Equations 26 (1977), 375-390.
  • [2] R. Chiappinelli, On eigenvalues and bifurcation for nonlinear Sturm-Liouville operators, Boll. Un. Mat. Ital. A (6) 4 (1985), 77-83.
  • [3] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
  • [4] L. Nirenberg, Topics in Nonlinear Functional Analysis, New York Univ. Lecture Notes, 1973-74.
  • [5] J. Przybycin, Nonlinear eigenvalue problems for fourth order ordinary differential equations, Ann. Polon. Math. 60 (1995), 249-253.
  • [6] P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475.
  • [7] K. Schmitt and H. L. Smith, On eigenvalue problems for nondifferentiable mappings, J. Differential Equations 33 (1979), 294-319.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-apmv71z1p39bwm