ArticleOriginal scientific text

Title

Special normal form of a hyperbolic CR-manifold in ℂ⁴

Authors 1, 2

Affiliations

  1. University of Adelaide, Department of Pure Mathematics, Adelaide, South Australia 5005, Australia
  2. Mathematisches Institut der Universität Bonn, Beringstraße 1, D-53115 Bonn, Germany

Abstract

We give a special normal form for a non-semiquadratic hyperbolic CR-manifold M of codimension 2 in ℂ⁴, i.e., a construction of coordinates where the equation of M satisfies certain conditions. The coordinates are determined up to a linear coordinate change.

Keywords

CR-manifolds, invariants, classification

Bibliography

  1. [CM74] S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271.
  2. [Lob88] A. V. Loboda, Generic real analytic manifolds of codimension 2 in ℂ⁴ and their biholomorphic mappings, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 970-990 (in Russian); English transl.: Math. USSR-Izv. 33 (1989), 295-315.
  3. [Lob90] A. V. Loboda, Linearizability of holomorphic mappings of generating manifolds of codimension 2 in ℂ⁴, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 632-644 (in Russian); English transl.: Math. USSR-Izv. 36 (1991), 655-667.
  4. [Poi07] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185-220.
  5. [Sch95] G. Schmalz, CR-Mannigfaltigkeiten höherer Kodimension und ihre Automorphismen, Habilitation thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 1995, to appear in Math. Nachr.
  6. [Web78] S. M. Webster, On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), 97-102.
Pages:
99-107
Main language of publication
English
Received
1998-01-05
Accepted
1998-05-22
Published
1998
Exact and natural sciences