ArticleOriginal scientific text
Title
On a problem of Seiberg and Witten
Authors 1
Affiliations
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109, U.S.A
Abstract
We describe alternate methods of solution for a model arising in the work of Seiberg and Witten on N = 2 supersymmetric Yang-Mills theory and provide a complete argument for the characterization put forth by Argyres, Faraggi, and Shapere of the curve .
Keywords
supersymmetric Yang-Mills theory, flat vector bundles, Wrońskian, Schwarzian
Bibliography
- [Ahl] L. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, 1979.
- [AFS] P. Argyres, A. Faraggi, and A. Shapere, Curves of marginal stability in N=2 super-QCD, hep-th/9505190 on WWW at URL http://xxx.lanl.gov.
- [Bar] D. Barrett, Failure of averaging on multiply-connected domains, Ann. Inst. Fourier (Grenoble) 40 (1990), 357-370.
- [BD] D. Barrett and J. Diller, Poincaré series and holomorphic averaging, Invent. Math. 110 (1992), 23-27.
- [Bea] A. Beardon, The Geometry of Discrete Groups, Springer, 1983.
- [Bil] A. Bilal, z Duality in N=2 SUSY SU(2) Yang-Mills theory: A pedagogical introduction to the work of Seiberg and Witten, hep-th/9601007 on WWW at URL http://xxx.lanl.gov.
- [Dil] J. Diller, Failure of weak holomorphic averaging on multiply connected domains, Math. Z. 217 (1994), 167-177.
- [Fay] A. Fayyazuddin, Some comments on N+2 supersymmetric Yang-Mills, Modern Phys. Lett. A 10 (1995), 2703-2708.
- F. Ferrari and A. Bilal, The strong-coupling spectrum of the Seiberg-Witten theory, Nuclear Phys. B 469 (1996), 387-402.
- [Hub] H. Huber, Über analytische Abbildungen Riemannscher Flächer in sich, Comm. Math. Helv. 27 (1953), 1-73.
- [Leh] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer, 1987.
- [Mat] M. Matone, Koebe 1/4-theorem and inequalities in N=2 supersymmetric QCD, Phys. Rev. D 53 (1996), 7354-7358.
- [SW] N. Seiberg and E. Witten, z Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nuclear Phys. B 426 (1994), 19-52.