ArticleOriginal scientific text
Title
Adapted complex structures and Riemannian homogeneous spaces
Authors 1
Affiliations
- Department of Analysis, Eötvös University, Múzeum krt. 6-8, 1088 Budapest, Hungary
Abstract
We prove that every compact, normal Riemannian homogeneous manifold admits an adapted complex structure on its entire tangent bundle.
Keywords
adapted complex structures, Riemannian homogeneous spaces
Bibliography
- [B-D] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer, New York, 1985.
- [Be] A. L. Besse, Einstein Manifolds, Springer, 1987.
- [Bu] D. Burns, On the uniqueness and characterization of Grauert tubes, in: Complex Analysis and Geometry, V. Ancona, E. Ballico and A. Silva (eds.), Marcel Dekker, 1996, 119-133.
- [G-S] V. Guillemin and M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation I, J. Differential Geom. 34 (1991), 561-570.
- [Ka] S. J. Kan, On the rigidity of non-positively curved Grauert tubes, preprint, 1996.
- [Ka2] S. J. Kan, The asymptotic expansion of a CR invariant and Grauert tubes, Math. Ann. 304, (1996), 63-92.
- L. Lempert and R. Szőke, Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds, Math. Ann. 291 (1991), 689-712.
- [Ma] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J. 16 (1960), 205-218.
- [M] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 4 (1955), 31-54.
- [Sz] R. Szőke, Complex structures on the tangent bundle of Riemannian manifolds, Math. Ann. 291 (1991), 409-428.
- [Sz2] R. Szőke, Automorphisms of certain Stein manifolds, Math. Z. 219 (1995), 357-385.
- [Sz3] R. Szőke, Adapted complex structures on tangent bundles of Riemannian manifolds, in: Complex Analysis and Generalized Functions (Varna, 1991), I. Dimovski and V. Hristov (eds.), Publ. House Bulgarian Acad. Sci., Sofia, 1993, 304-314.