ArticleOriginal scientific text

Title

Some applications of a new integral formula for ̅b

Authors 1

Affiliations

  1. Département de Mathématiques Université de Poitiers 40 Avenue du Recteur Pineau 86022 Poitiers Cedex, France

Abstract

Let M be a smooth q-concave CR submanifold of codimension k in n. We solve locally the ̅b-equation on M for (0,r)-forms, 0 ≤ r ≤ q-1 or n-k-q+1 ≤ r ≤ n-k, with sharp interior estimates in Hölder spaces. We prove the optimal regularity of the ̅b-operator on (0,q)-forms in the same spaces. We also obtain Lp estimates at top degree. We get a jump theorem for (0,r)-forms (r ≤ q-2 or r ≥ n-k-q+1) which are CR on a smooth hypersurface of M. We prove some generalizations of the Hartogs-Bochner-Henkin extension theorem on 1-concave CR manifolds.

Keywords

CR manifold, tangential Cauchy-Riemann equations, q-convexity

Bibliography

  1. R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Surveys 39 (1984), 41-118.
  2. R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions II, Math. USSR-Sb. 55 (1986), no. 1, 91-111.
  3. A. Andreotti, G. Fredricks and M. Nacinovich, On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 365-404.
  4. M. Y. Barkatou, Régularité höldérienne du ̅b sur les hypersurfaces 1-convexes-concaves, Math. Z. 221 (1996), 549-572.
  5. M. Y. Barkatou, thesis, Grenoble, 1994.
  6. M. Y. Barkatou, Formules locales de type Martinelli-Bochner-Koppelman sur des variétés CR, Math. Nachr., 1998.
  7. M. Y. Barkatou, Optimal regularity for ̅b on CR manifolds, J. Geom. Anal., to appear.
  8. S. Berhanu and S. Chanillo, Hölder and Lp estimates for a local solution of ̅b at top degree, J. Funct. Anal. 114 (1993), 232-256.
  9. A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, CRC Press, Boca Raton, Fla., 1991.
  10. A. Boggess and M.-C. Shaw, A kernel approach to the local solvability of the tangential Cauchy-Riemann equations, Trans. Amer. Math. Soc. 289 (1985), 643-658.
  11. L. Ehrenpreis, A new proof and an extension of Hartogs' theorem, Bull. Amer. Math. Soc. 67 (1961), 507-509.
  12. B. Fischer, Kernels of Martinelli-Bochner type on hypersurfaces, Math. Z. 223 (1996), 155-183.
  13. R. Harvey and J. Polking, Fundamental solutions in complex analysis, Parts I and II, Duke Math. J. 46 (1979), 253-300 and 301-340.
  14. G. M. Henkin, Solutions des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 27-30.
  15. G. M. Henkin, The Hans Lewy equation and analysis of pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59-130.
  16. G. M. Henkin, The method of integral representations in complex analysis, in: Several Complex Variables I, Encyclopaedia Math. Sci. 7, Springer, 1990, 19-116.
  17. G. M. Henkin, The Hartogs-Bochner effect on CR manifolds, Soviet Math. Dokl. 29 (1984), 78-82.
  18. C. Laurent-Thiébaut, Résolution du ̅b à support compact et phénomène de Hartogs-Bochner dans les variétés CR, in: Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 239-249.
  19. C. Laurent-Thiébaut and J. Leiterer, Uniform estimates for the Cauchy-Riemann equation on q-convex wedges, Ann. Inst. Fourier (Grenoble) 43 (1993), 383-436.
  20. C. Laurent-Thiébaut and J. Leiterer, Uniform estimates for the Cauchy-Riemann equation on q-concave wedges, Astérisque 217 (1993), 151-182.
  21. C. Laurent-Thiébaut and J. Leiterer, Andreotti-Grauert Theory on Hypersurfaces, Quaderni della Scuola Normale Superiore di Pisa, 1995.
  22. L. Ma and J. Michel, Local regularity for the tangential Cauchy-Riemann, J. Reine Angew. Math. 442 (1993), 63-90.
  23. J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
  24. P. L. Polyakov, Sharp estimates for the operator ̅M on a q-concave CR manifold, preprint.
  25. R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math. 108, Springer, 1986.
  26. R. M. Range and Y. T. Siu, Uniform estimates for the ∂̅-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354.
  27. M.-C. Shaw, Homotopy formulas for ̅b in CR manifolds with mixed Levi signatures, Math. Z. 224 (1997), 113-136.
  28. E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445.
  29. F. Trèves, Homotopy formulas in the tangential Cauchy-Riemann complex, Mem. Amer. Math. Soc. 434 (1990).
Pages:
1-24
Main language of publication
English
Received
1997-12-28
Accepted
1998-08-31
Published
1998
Exact and natural sciences