ArticleOriginal scientific text

Title

On the local meromorphic extension of CR meromorphic mappings

Authors 1, 2

Affiliations

  1. Laboratoire d'Analyse, Topologie et Probabilités, UMR 6632, Centre de Mathématiques et d'Informatique, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France
  2. Max-Planck-Gesellschaft, Humboldt-Universität zu Berlin, Jägerstrasse, 10-11, D-10117 Berlin, Germany

Abstract

Let M be a generic CR submanifold in m+n, m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple (f,f,[Γf]), where: 1) f:fY is a ¹-smooth mapping defined over a dense open subset _f of M with values in a projective manifold Y; 2) the closure Γf of its graph in m+n×Y defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) d[Γf]=0 in the sense of currents. We prove that (f,f,[Γf]) extends meromorphically to a wedge attached to M if M is everywhere minimal and ^ω (real-analytic) or if M is a ^{2,α} globally minimal hypersurface.

Keywords

CR generic currents, scarred CR manifolds, removable singularities for CR functions, deformations of analytic discs, CR meromorphic mappings

Bibliography

  1. E. Chirka, Complex Analytic Sets, Kluwer, Dordrecht, 1989.
  2. E. M. Chirka and E. L. Stout, Removable singularities in the boundary, in: Contributions to Complex Analysis and Analytic Geometry, Aspects of Math. E26, Vieweg, 1994, 43-104.
  3. T.-C. Dinh and F. Sarkis, Wedge removability of metrically thin sets and application to the CR meromorphic extension, preprint, 1997.
  4. P. Dolbeault et G. M. Henkin, Chaînes holomorphes de bord donné dans n, Bull. Soc. Math. France 125 (1997), 383-446.
  5. F. R. Harvey and H. B. Lawson, On boundaries of complex analytic varieties, Ann. of Math., I: 102 (1975), 233-290; II: 106 (1977), 213-238.
  6. S. M. Ivashkovich, The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math. 109 (1992), 47-54.
  7. B. Jöricke, Removable singularities for CR-functions, Ark. Mat. 26 (1988), 117-143.
  8. B. Jöricke, Envelopes of holomorphy and CR-invariant subsets of CR-manifolds, C. R. Acad. Sci. Paris Sér. I 315 (1992), 407-411.
  9. B. Jöricke, Deformation of CR- manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Anal. 6 (1996), 555-611.
  10. B. Jöricke, Some remarks concerning holomorphically convex hulls and envelope of holomorphy, Math. Z. 218 (1995), 143-157.
  11. B. Jöricke, Boundaries of singularity sets, removable singularities, and CR-invariant subsets of CR-manifolds, preprint, 1996.
  12. G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math. 124 (1986), 177-191.
  13. C. Laurent-Thiébaut, Sur l'extension de fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (4) 150 (1988), 141-151.
  14. J. Merker, Global minimality of generic manifolds and holomorphic extendibility of CR functions, Internat. Math. Res. Notices 8 (1994), 329-342.
  15. J. Merker, On removable singularities for CR functions in higher codimension, ibid. 1 (1997), 21-56.
  16. J. Merker and E. Porten, On removable singularities for integrable CR functions, preprint, 1997; available at: http://www.dmi.ens.fr/EDITION/preprints.
  17. E. Porten, thesis, Berlin, 1996.
  18. E. Porten, A Hartogs-Bochner type theorem for continuous CR mappings, manuscript, 1997.
  19. F. Sarkis, CR meromorphic extension and the non embedding of the Andreotti-Rossi CR structure in the projective space, Internat. J. Math., to appear.
  20. B. Shiffman, Separately meromorphic mappings into Kähler manifolds, in: Contributions to Complex Analysis and Analytic Geometry, Aspects of Math. E26, Vieweg, 1994, 243-250.
  21. J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. France 118 (1990), 403-450.
  22. A. E. Tumanov, Connections and propagation of analyticity for CR functions, Duke Math. J. 73 (1994), 1-24.
Pages:
163-193
Main language of publication
English
Received
1997-12-20
Accepted
1998-09-04
Published
1998
Exact and natural sciences